cho x,y,z>0 và x+y+z=3 tính giá trị nhỏ nhất của (1/x+x^2)+(1/y+y^2)+(1/z+z^2)
Cho x, y, z > 0 và x+y+z = 3. Tìm giá trị nhỏ nhất của: a) P = 1/(x^2+1) + 1/(y^2+1 + 1/(z^2+1)
Cho \(x,y,z\) không âm, không đồng thời bằng \(0\) và thỏa \(\dfrac{1}{x+1}+\dfrac{1}{y+2}+\dfrac{1}{z+3}\le1\). Tìm giá trị nhỏ nhất của \(P=x+y+z+\dfrac{1}{x+y+z}\)
Ta có \(\dfrac{1}{x+1}+\dfrac{1}{y+2}+\dfrac{1}{z+3}\ge\dfrac{9}{x+y+z+6}\), do đó:
\(\dfrac{9}{x+y+z+6}\le1\)
\(\Leftrightarrow x+y+z\ge3\)
Đặt \(x+y+z=t\left(t\ge3\right)\). Khi đó \(P=t+\dfrac{1}{t}\)
\(P=\dfrac{t}{9}+\dfrac{1}{t}+\dfrac{8}{9}t\)
\(\ge2\sqrt{\dfrac{t}{9}.\dfrac{1}{t}}+\dfrac{8}{9}.3\)
\(=\dfrac{2}{3}+\dfrac{24}{9}\)
\(=\dfrac{10}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}t=x+y+z=3\\x+1=y+2=z+3\end{matrix}\right.\)
\(\Leftrightarrow\left(x,y,z\right)=\left(2,1,0\right)\)
Vậy \(min_P=\dfrac{10}{3}\Leftrightarrow\left(x,y,z\right)=\left(2,1,0\right)\)
Giá trị nhỏ nhất của biểu thức A=|x+1|^3+4 là..............
Biết x;y thỏa mãn |x+1|+|x-y+2|=0. Khi đó x^2+y^2+1 là..............
Giá trị lớn nhất của biểu thức A=6/|x+1|+3 là.............
Với n là số tự nhiên khác 0, khi đó giá trị biểu thức A=(1/4)^n-(1/2)^n/(1/2)^n-1 -(1/2)^n+2012 là..............
Cho x,y, z khác 0 và x-y-z=0. Tính giá trị biểu thức (1-z/x).(1-x/y).(1+y/z) là..................
AI TL GIÙM ĐI!!!!!!!!!!1 CẦN GẤP, NẾU ĐÚNG SẼ TICK CHO (KO CẦN TL HẾT, CHỈ CẦN ĐÚNG LÀ ĐC RỒI!!)
3r3reR
các số x,y,z>0 và thỏa mãn 1/(x+1) +1/(y+2) +1(z+3)<= 1 Tìm giá trị nhỏ nhất của P= x+y+z + 1/(x+y+z).
Em có cách này anh/chị check thử ạ.
Dự đoán xảy ra cực trị tại: x = 2; y = 1; z = 0
Áp dụng BĐT quen thuộc: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\),ta có: \(1\ge\frac{1}{x+1}+\frac{1}{y+2}+\frac{1}{z+3}\ge\frac{9}{x+y+z+6}\)
\(\Rightarrow x+y+z+6\ge9\Leftrightarrow x+y+z\ge3\)
Đặt \(t=x+y+z\ge3\).Ta cần tìm min của: \(P\left(t\right)=t+\frac{1}{t}\) với \(t\ge3\)
Ta có: \(P\left(t\right)=t+\frac{1}{t}=\left(\frac{t}{9}+\frac{1}{t}\right)+\frac{8t}{9}\)
\(\ge2\sqrt{\frac{t}{9}.\frac{1}{t}}+\frac{8t}{9}=\frac{2}{3}+\frac{8t}{9}\ge\frac{2}{3}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}t=3\\\frac{1}{x+1}=\frac{1}{y+2}=\frac{1}{z+3}=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+z=3\\x+1=y+2=z+3=3\left(2\right)\end{cases}}\)
Giải (2) ta được x = 2; y = 1; z = 0 (t/m x + y + z = 3)
Vậy \(P_{min}=\frac{10}{3}\Leftrightarrow x=2;y=1;z=0\)
Cho các số thực x, y, z thỏa mãn \(x^2+y^2+z^2=5\) và x - y + z = 3 . Giá trị nhỏ nhất của biểu thức \(P=\dfrac{x+y-2}{z+2}\) bằng
A. \(\dfrac{1}{2}\) B. \(0\) C. \(\dfrac{-36}{23}\) D. \(\dfrac{-13}{4}\)
cho 0<x,y,z<=1 và x+y+z=2. Tìm giá trị nhỏ nhất của \(A=\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\)
Có thể giải bài toán bằng cách áp dụng bất đẳng thức Cauchy-Schwartz sau đây
Bổ đề. Với mọi số thực \(a,b,c\) và các số dương \(x,y,z\) ta có \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}.\) Dấu bằng xảy ra khi và chỉ khi \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\).
Chứng minh. Đầu tiên ta chứng minh \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}.\) Thực vậy bất đẳng thức tương đương với \(\left(ya^2+xb^2\right)\left(x+y\right)\ge xy\left(a+b\right)^2\Leftrightarrow b^2x^2+a^2y^2\ge2abxy\) (Đúng).
Áp dụng bất đẳng thức trên hai lần ta được
\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}.\)
Quay trở lại bài toán, ta có
\(A=\frac{\left(1-x\right)^2}{z}+\frac{\left(1-y\right)^2}{x}+\frac{\left(1-z\right)^2}{y}\ge\frac{\left(1-x+1-y+1-z\right)^2}{z+x+y}=\frac{\left(3-x-y-z\right)^2}{x+y+z}=\frac{1}{2}.\)
Khi \(x=y=z=\frac{2}{3}\) thì \(A=\frac{1}{2}\). Vậy giá trị bé nhất của \(A\) là \(\frac{1}{2}\).
cho ba số x,y,z thõa mãn 0 < x,y,z =< 1 và x+y+z=2.
Tìm giá trị nhỏ nhất của A = \(\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\)
1. a. Tìm x,y,z biết x2+4y2= 2xy +1 và z2=2xy -1
b. cho x+y+z=1 và\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)Tính Giá trị biểu thức B= x2+y2+z2
2. Cho x,y khác 0 thỏa mãn x+y=xy. Tìm giá trị nhỏ nhất của biểu thức sau:
A=\(\frac{1}{x^2}+\frac{1}{y^2}\)
Bài \(1a.\) Tìm \(x,y,z\) biết \(x^2+4y^2=2xy+1\) \(\left(1\right)\) và \(z^2=2xy-1\) \(\left(2\right)\)
Cộng \(\left(1\right)\) và \(\left(2\right)\) vế theo vế, ta được:
\(x^2+4y^2+z^2=4xy\)
\(\Leftrightarrow\) \(x^2-4xy+4y^2+z^2=0\)
\(\Leftrightarrow\) \(\left(x-2y\right)^2+z^2=0\)
Do \(\left(x-2y\right)^2\ge0\) và \(z^2\ge0\) với mọi \(x,y,z\)
nên để thỏa mãn đẳng thức trên thì phải đồng thời xảy ra \(\left(x-2y\right)^2=0\) và \(z^2=0\)
\(\Leftrightarrow\) \(^{x-2y=0}_{z^2=0}\) \(\Leftrightarrow\) \(^{x=2y}_{z=0}\)
Từ \(\left(2\right)\), với chú ý rằng \(x=2y\) và \(z=0\), ta suy ra:
\(2xy-1=0\) \(\Leftrightarrow\) \(2.\left(2y\right).y-1=0\) \(\Leftrightarrow\) \(4y^2-1=0\) \(\Leftrightarrow\) \(y^2=\frac{1}{4}\) \(\Leftrightarrow\) \(y=\frac{1}{2}\) hoặc \(y=-\frac{1}{2}\)
\(\text{*)}\) Với \(y=\frac{1}{2}\) kết hợp với \(z=0\) \(\left(cmt\right)\) thì \(\left(2\right)\) \(\Rightarrow\) \(2.x.\frac{1}{2}-1=0\) \(\Leftrightarrow\) \(x=1\)
\(\text{*)}\) Tương tự với trường hợp \(y=-\frac{1}{2}\), ta cũng dễ dàng suy ra được \(x=-1\)
Vậy, các cặp số \(x,y,z\) cần tìm là \(\left(x;y;z\right)=\left\{\left(1;\frac{1}{2};0\right),\left(-1;-\frac{1}{2};0\right)\right\}\)
\(b.\) Vì \(x+y+z=1\) nên \(\left(x+y+z\right)^2=1\)
\(\Leftrightarrow\) \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=1\) \(\left(3\right)\)
Mặt khác, ta lại có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) \(\Rightarrow\) \(xy+yz+xz=0\) \(\left(4\right)\) (do \(xyz\ne0\))
Do đó, từ \(\left(3\right)\) và \(\left(4\right)\) \(\Rightarrow\) \(x^2+y^2+z^2=1\)
Vậy, \(B=1\)
Ta có:
\(A=\frac{1}{x^2}+\frac{1}{y^2}=\frac{x^2+y^2}{\left(xy\right)^2}=\frac{x^2+y^2}{\left(x+y\right)^2}\) (do \(x+y=xy\)) \(\left(5\right)\)
Dễ dàng chứng minh được với mọi \(x,y\in R\), ta luôn có:
\(\left(x+y\right)^2\le2\left(x^2+y^2\right)\) \(\left(\text{*}\right)\)
Thật vậy, áp dụng bất đẳng thức Bunyakovsky cho hai bộ số \(\left(1^2+1^2\right)\) và \(\left(x^2+y^2\right)\), ta được:
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(1.x+1.y\right)^2=\left(x+y\right)^2\)
Do đó, \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\), hay \(\left(x+y\right)^2\le2\left(x^2+y^2\right)\) \(\left(đpcm\right)\)
Vậy, bất đẳng thức \(\left(\text{*}\right)\) hiển nhiên đúng với mọi \(x,y\in R\), tức bđt \(\left(\text{*}\right)\) được chứng minh.
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\frac{1}{x}=\frac{1}{y}\) \(\Leftrightarrow\) \(x=y\)
Khi đó, từ \(\left(\text{*}\right)\) \(\Rightarrow\) \(\frac{1}{\left(x+y\right)^2}\ge\frac{1}{2\left(x^2+y^2\right)}\) (do hai vế của bđt \(\left(\text{*}\right)\) cùng dấu \(\left(+\right)\))
nên \(\frac{x^2+y^2}{\left(x+y\right)^2}\ge\frac{x^2+y^2}{2\left(x^2+y^2\right)}=\frac{1}{2}\) (vì \(x^2+y^2>0\) với mọi \(x,y\in R\) và \(x,y\ne0\)) \(\left(6\right)\)
\(\left(5\right);\) \(\left(6\right)\) \(\Rightarrow\) \(A\ge\frac{1}{2}\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(^{x+y=xy}_{x=y}\) \(\Leftrightarrow\) \(x=y=2\)
Vậy, GTNN của \(A=\frac{1}{2}\)
Cho 3 số x, y, z thỏa mán 0<x,y,z <1 và x+y+z=2. Timif giá trị nhỏ nhất của A=\(\frac{\left(x-1\right)^2}{z}\)+\(\frac{\left(y-1\right)^2}{x}\)+\(\frac{\left(z-1\right)^2}{y}\)