\(a,1\frac{1}{3};1\frac{1}{8};1\frac{1}{15};1\frac{1}{24};...\)
\(b,1\frac{1}{2};1\frac{1}{3};1\frac{1}{4};...\)
Cho dãy số sau
\(\frac{1}{5};\frac{1}{45};\frac{1}{117};\frac{1}{221};\frac{1}{357};.....\)
a) Tìm quy luật của dãy số
b) Viết dạng tổng quát và tìm số hạng thứ 10, thứ 100 của dãy số
c) Tính tổng 100 số hạng đầu tiên của dãy số
Tìm tổng của 100 số hạng đầu tiên của dãy sau:\(\frac{1}{6};\frac{1}{66};\frac{1}{176};\frac{1}{336};...\)
Cho dãy số sau: \(1\frac{1}{3}+1\frac{1}{8}+1\frac{1}{15}+1\frac{1}{24}+...\)
Gọi S là tích của 100 số hạng đầu tiên của dãy.
Khi đó 51S = ...
Cho dãy số viết theo quy luật:
\(1\frac{1}{2};1\frac{1}{5};1\frac{1}{9};1\frac{1}{14};1\frac{1}{20};..................\)
TÌM TÍCH CỦA 100 SỐ HẠNG ĐẦU TIÊN CỦA DÃY
o mau cu cong tang dan
+3;+4;+5;+6;+7;+8;+..........................
Cho dãy số sau : \(1\frac{1}{3};1\frac{1}{8};1\frac{1}{15};1\frac{1}{24};1\frac{1}{35};...\)
Tìm tích của 98 số hạng đầu tiên của dãy trên.
Viết lại dãy phân số: \(\frac{4}{3};\frac{9}{8};\frac{16}{15};\frac{25}{24};\frac{36}{35};...\) hay \(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};\frac{5^2}{4.6};\frac{6^2}{5.7};...\)
=> Số hạng thứ 98 là : \(\frac{99^2}{98.100}\)
=> Tích cần tính = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}.\frac{6^2}{5.7}....\frac{99^2}{98.100}=\frac{\left(2.3.4...99\right)^2}{\left(1.2.3...98\right).\left(3.4.5....100\right)}=\frac{99.2}{100}=\frac{99}{50}\)
Các số hạng đc viết dưới dạng: \(\frac{2^2}{1.3};\frac{3^2}{2.4};\frac{4^2}{3.5};.........\)
=> Số hạng thứ 98 có dạng \(\frac{99^2}{98.100}\)
Vậy ta cần tính tích:
A = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}........\frac{99^2}{98.100}\)
= \(\frac{\left(2.3.4..........99\right)\left(2,3,4,,,,,,,,,,,,99\right)}{\left(1.2.3.......98\right)\left(3.4.5.........100\right)}\)
=\(\frac{99.2}{1.100}=\frac{99}{50}\)
Tích của 98 số hạng đầu tiên của dãy trên là \(\frac{99}{50}\).
Tính tổng của 100 số hạng đầu tiên của dãy số sau:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
ko ghi lại đề bài
=1/1-1/2+1/2-1.3+...+1/99-1/100
=1/1-1/100
=99/100
hc tốt
ko ghi lại đề
=1/1-1/2+1/2-1/3+...+1/99-1/100
=1/1-1/100
=99/100
A=1-1/2+1/2-1/3+...+1/99-1/100
A=1-1/100
A=99/100
cho dãy số \(1\frac{1}{3};1\frac{1}{8};1\frac{1}{15};1\frac{1}{24};1\frac{1}{35}\)
S là Tích của 100 số đầu hạng đầu tiên của dãy
Khi đó 51S =....
Ch dãy số 0,1; 0,01; 0,001; 0,0001;...
a. Tính tổng 100 số hạng đầu của dãy?
b. Số hạng thứ 100 của dãy là số nào?
c. Tìm tích 20 số hạng đầu tiên của dãy?
Tìm tổng của 100 trăm số hạng đầu tiên trong dãy số sau:
1; 2; 3; 4; 5; 6; 7; 8; 9; 1; 0; 1; 1; 1; 2; 1; 3; 1; 4; 1; 5
Cho dãy số: \(1\frac{1}{3};1\frac{1}{8};1\frac{1}{15};1\frac{1}{24};1\frac{1}{35};...\)
a) Hỏi số hạng thứ 10 của dãy số trên là số nào? ( dạng hỗn số )
b) Gọi A là tích 10 số hạng đầu tiên của dãy. Tính 6A.
\(a.1\frac{1}{120}\)
nha bạn
Nguyễn Anh Kim Hân\(a.1\frac{1}{120}\)
k mk nha Nguyễn Anh Kim Hân
cái biểu tượng hình cái chuông ghi là Quản lý thông báo của Online math là sao vậy các bn