So sánh:
A=\(\frac{2013^{2012}-1}{2013^{2013}-1}\)và B=\(\frac{2013^{2011}+1}{2013^{2012}+1}\)
So sánh 2 số sau: M=\(\frac{2013^{2012}+2012}{2013^{2011}+1}\)và \(N=\frac{2013^{2011}+2012}{2013^{2010}+1}\)
Ta có :
\(\frac{1}{2013}M=\frac{2013^{2012}+2012}{2013^{2012}+2013}=\frac{2013^{2012}+2013}{2013^{2012}+2013}-\frac{1}{2013^{2012}+2013}=1-\frac{1}{2013^{2012}+2013}\)
Lại có :
\(\frac{1}{2013}N=\frac{2013^{2011}+2012}{2013^{2011}+2013}=\frac{2013^{2011}+2013}{2013^{2011}+2013}-\frac{1}{2013^{2011}+2013}=1-\frac{1}{2013^{2011}+2013}\)
Vì \(\frac{1}{2013^{2012}+2013}< \frac{1}{2013^{2011}+2013}\) nên \(M=1-\frac{1}{2013^{2012}}>N=1-\frac{1}{2013^{2011}+2013}\)
Vậy \(M>N\)
Chúc bạn học tốt ~
Không tính cụ thể , hãy sắp xếp các biểu thức sau theo thứ tự giảm dần :
\(\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
dễ ợt nhưng éo biết làm thông cảm nha
ban Dang Ha Trang an noi gi ki vay
cho \(A=\frac{2011}{2012}+\frac{2012}{2013};B=\frac{2011+2013}{2012+2013}\)So sánh A và B
Gọi 2011 là a
2012 là b;2013 là c
=>\(A=\frac{2011}{2012}+\frac{2012}{2013}=\frac{a}{b}+\frac{b}{c}\);\(B=\frac{2011+2013}{2012+2013}=\frac{a+c}{b+c}\)
=>\(A=\frac{a}{b}+\frac{b}{c}=\frac{ac+b^2}{bc}\)\(=\frac{\left(ac+b^2\right).\left(b+c\right)}{bc.\left(b+c\right)}\);\(B=\frac{a+c}{b+c}=\frac{\left(a+c\right).bc}{bc.\left(b+c\right)}\)
b+c>a+c;b2+ac>bc
Vậy A>B
\(ChoA=\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+...+\frac{2013}{2013}\) và B=\(\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}\)Tính\(\frac{A}{B}\)
So sánh \(\left(\frac{2012^{2012}}{2013^{2012}}+1\right)^{2013}\) và \(\left(\frac{2012^{2013}}{2013^{2013}}+1\right)^{2012}\)
Ta có \(\frac{2012^{2013}}{2013^{2013}}=\frac{2012^{2012}}{2013^{2012}}.\frac{2012}{2013}\)
Vì \(\frac{2012}{2013}< 1\)nên\(\frac{2012^{2012}}{2013^{2012}}.\frac{2012}{2013}< \frac{2012^{2012}}{2013^{2012}}.1=\frac{2012^{2012}}{2013^{2012}}\)
hay \(\frac{2012^{2013}}{2013^{2013}}< \frac{2012^{2012}}{2013^{2012}}\)
\(\Rightarrow\frac{2012^{2013}}{2013^{2013}}+1< \frac{2012^{2012}}{2013^{2012}}+1\)
\(\Rightarrow\left(\frac{2012^{2013}}{2013^{2013}}+1\right)^{2012}< \left(\frac{2012^{2012}}{2013^{2012}}+1\right)^{2013}\)
So sánh:\(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}\)và\(\frac{2010}{2008}+\frac{2011}{2013}+\frac{2012}{2014}+\frac{2013}{2015}\)
bài 1: a)thực hiện phép tính :1-5-9+13+17-21-25+....+2001-2005-2009+2013
b)so sánh P và Q biết :
P = \(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\) ; Q =\(\frac{2010+2011+2012}{2011+2012+2013}\)
So sánh A và B , biết rằng :
A = \(-\frac{1}{2010.2011}-\frac{1}{2012.2013}\)và B = \(\frac{2010}{2011}-\frac{2011}{2012}+\frac{2012}{2013}-\frac{2013}{2014}\)
\(\frac{\frac{1}{2}+\frac{1}{3}+......+\frac{1}{2013}}{\frac{2012}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2013}}{\frac{2012}{1}+2+\frac{2012}{2}+1+\frac{2011}{3}+1+...+\frac{1}{2013}+1-2014}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}{\frac{2014}{1}+\frac{2014}{2}+...+\frac{2014}{2013}-2014}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}{2014\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}-1\right)}\)
=\(\frac{1}{2014}\)