Những câu hỏi liên quan
H24
Xem chi tiết
NQ
9 tháng 1 2021 lúc 21:34

\(A=3+3^2+3^3+...+3^{100}+3^{101} \)

\(\Leftrightarrow A=3+\left(3^2+3^3+3^4+3^5\right)+\left(3^6+3^7+3^8+3^9\right)+...+\left(3^{98}+3^{99}+3^{100}+3^{101}\right)\)

\(\Leftrightarrow A=3+3\left(3+3^2+3^3+3^4\right)+3^2\left(3+3^2+3^3+3^4\right)+...+3^{97}\left(3+3^2+3^3+3^4\right)\)

mà \(3+3^2+3^3+3^4=120 ⋮ 120\) vậy A chia 120 dư 3

Bình luận (0)
 Khách vãng lai đã xóa
KN
Xem chi tiết
HQ
3 tháng 11 2023 lúc 10:10

không bt nữa

Bình luận (0)
NP
8 tháng 1 2024 lúc 20:12

Lồn cặc

 

Bình luận (0)
LT
Xem chi tiết
UC
8 tháng 11 2021 lúc 9:19

bài này lớp mấy dấy khó thế

Bình luận (0)
 Khách vãng lai đã xóa
TD
8 tháng 11 2021 lúc 9:33
Bài này lớp 6
Bình luận (0)
 Khách vãng lai đã xóa
PK
8 tháng 11 2021 lúc 9:53

Còn câu trả lời thì chưa ai đăng.

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
TN
Xem chi tiết
H24
22 tháng 12 2021 lúc 22:09

A=2^0 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100

A=1 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100

A=1 + (2^1 + 2^2) + (2^3 + 2^4) + ....+(2^99 + 2^100)

A=1 + 2.(1+2) + 2^3.(1+2)+....+2^99.(1+2)

A=1 + 2 . 3 + 2^3 . 3 +....+2^99 . 3

A=1 +3 .(2+2^3+..+2^99)

=> A:3 dư 1

học tốt nhé bạn

Bình luận (0)
 Khách vãng lai đã xóa
ND
22 tháng 12 2021 lúc 22:19

mik cũng vậy

Bình luận (0)
 Khách vãng lai đã xóa
ND
22 tháng 12 2021 lúc 22:04

mik giúp nhưng nhớ k cho mik nha

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
TT
Xem chi tiết
TT
17 tháng 11 2021 lúc 20:46

con khong biet

Bình luận (0)
 Khách vãng lai đã xóa
H24
26 tháng 12 2022 lúc 21:46

Sai hết :)

Bình luận (0)
TD
Xem chi tiết
H24
22 tháng 12 2023 lúc 20:07

\(A=2^0+2^1+2^2+2^3+2^4+2^5+\dots+2^{100}\\=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+\dots+(2^{99}+2^{100})+2^0\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+\dots+2^{99}\cdot(1+2)+1\\=2\cdot3+2^3\cdot3+2^5\cdot3+\dots+2^{99}\cdot3+1\\=3\cdot(2+2^3+2^5+\dots+2^{99})+1\)

Vì \(3\cdot(2+2^3+2^5+\dots+2^{99})\vdots3\)

\(\Rightarrow 3\cdot(2+2^3+2^5+\dots+2^{99})+1\) chia \(3\) dư 1

hay số dư của phép chia \(A\) cho \(3\) là \(1\).

Bình luận (0)
LK
22 tháng 12 2023 lúc 20:10

A=2^0 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100

A=1 + 2^1 + 2^2 + 2^3 + 2^4 + ....+2^100

A=1 + (2^1 + 2^2) + (2^3 + 2^4) + ....+(2^99 + 2^100)

A=1 + 2.(1+2) + 2^3.(1+2)+....+2^99.(1+2)

A=1 + 2 . 3 + 2^3 . 3 +....+2^99 . 3

A=1 +3 .(2+2^3+..+2^99)

=> A:3 dư 1

Bình luận (0)
MT
Xem chi tiết
H24

có lời giải ko bạn

Bình luận (0)
H24
15 tháng 1 2019 lúc 17:24

Đặt S=1+2+2^2+..........+2^2019

Vì: S có 2020 số hạng nên ta chia S thành:673 nhóm mỗi nhóm có  3 số hạng và thừa 1 số hạng như sau 

S=1+(2+2^2+2^3)+(2^4+2^5+2^6)+...........+(2^2017+2^2018+2^2019)

S=1+2(1+2+4)+2^4(1+2+4)+........+2^2017(1+2+4)

S=1+2.7+2^4.7+.....+2^2017.7

S=1+7(2+2^4+2^2017) chia 7 dư 1

Vậy: 1+2+2^2+2^3+..........+2^2019 chia 7 dư 1

Bình luận (0)
BN
16 tháng 1 2019 lúc 19:46

Đặt S=1+2+2^2+..........+2^2019

Vì: S có 2020 số hạng nên ta chia S thành:673 nhóm mỗi nhóm có  3 số hạng và thừa 1 số hạng như sau 

S=1+(2+2^2+2^3)+(2^4+2^5+2^6)+...........+(2^2017+2^2018+2^2019)

S=1+2(1+2+4)+2^4(1+2+4)+........+2^2017(1+2+4)

S=1+2.7+2^4.7+.....+2^2017.7

S=1+7(2+2^4+2^2017) chia 7 dư 1

Vậy: 1+2+2^2+2^3+..........+2^2019 chia 7 dư 1

Bình luận (0)