tim n sao cho n^3 +2n^2 +7n -7 chia het cho n^2 +3
tim n thuoc Z n^3 - 2n^2 +7n-7 chia het cho n^2 +3
tim n sao cho
a) n+11 chia het cho n+1
b)7n chia het cho n-3
c)n^2+2n+ chia het cho n+4
d)n^2+n+1 chia het cho n+1
nho cac ban giai ho mik roi mik tick cho, cam on
Tim so tu nhien n sao cho:
a)n+2 chia het cho n-1
b)2n+7 chia het cho n+1
c)2n+1 chia het cho 6-n
d)3n chia het cho 5-2n
e)4n +3 chia het cho 2n+6
a, Tìm n thuộc Z, biết n+2 chia hết cho n-1 - Nguyễn Thủy Tiên
tim so tu nhien n de
a)n+10 chia het cho n+1
b)3n+40 chia het cho n+2
c)n2+7n+75 chia het cho n+4
d)2n+3 chia het cho n-2
CMR n^3 - 2n^2 + 7n - 7 chia het cho n^2 + 3 voi moi n thuoc Z
tìm n thuộc Z sao cho a,n2+2n-4 chia hết cho 11 b,2n3+n2+7n+1 chia hết cho 2n-1 c,n4-2n3+2n2-2n+1 chia het cho n4-1 d,n3-n2+2n+7 chia het cho n2+1
(Chỉ là chia đa thức thôi mà!)
Anh giải câu b thôi, mấy câu còn lại tự làm nha.
\(2n^3+n^2+7n+1=\left(2n-1\right)\left(n^2+n+4\right)+5\)
Suy ra \(\frac{2n^3+n^2+7n+1}{2n-1}=n^2+n+4+\frac{5}{2n-1}\)
Để vế trái nguyên thì \(2n-1\) là ước của \(5\). Giải được \(n=-2,0,1,3\)
Tim so tu nhien n sao cho
(n+2) chia het cho (n+1)
(2n+7) chia het cho (n+1)
3n chia het cho (5 * 24)
(4n+3) chia het cho (2n-6)
(2n+1) chia het cho (6-n)
Bài 1
n + 2 ⋮ n + 1
n + 1 + 1 ⋮ n + 1
1 ⋮ n + 1
n + 1 \(\in\) Ư(1) = {-1; 1}
n \(\in\) {-2; 0}
Vì n \(\in\) N nên n = 0
Vậy n = 0
Bài 2:
2n + 7 ⋮ n + 1
2(n + 1) + 5 ⋮ n + 1
5 ⋮ n + 1
n + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) {-6; -2; 0; 4}
Vì n \(\in\) N nên n \(\in\) {0; 4}
Vậy n \(\in\) {0; 4}
Bài 3
3n ⋮ 5.24
n ⋮ 40
n = 40k (k \(\in\) N)
Vậy n = 40k ; k \(\in\) N
1/tim n thuoc N sao cho:
a/(2n+12) chia het cho (n+2)
b/(3n+5) chia het cho (n-2)
2/ tim x sao cho:
a/(x+3).(x^2+1)=0
b/(x+7).(x^2-36)=0
a/ \(2n+12⋮n+2\)
Mà \(n+2⋮n+2\)
\(\Leftrightarrow\hept{\begin{cases}2n+12⋮n+2\\2n+4⋮n+2\end{cases}}\)
\(\Leftrightarrow8⋮n+2\)
\(\Leftrightarrow n+2\inƯ\left(8\right)\)
Suy ra :
+) n + 2 = 1 => n = -1 (loại)
+) n + 2 = 2 => n = 0
+) n + 2 = 4 => n = 2
+) n + 2 = 8 => n = 6
Vậy ......
b/ \(3n+5⋮n-2\)
Mà \(n-2⋮n-2\)
\(\Leftrightarrow\hept{\begin{cases}3n+5⋮n-2\\3n-6⋮n-2\end{cases}}\)
\(\Leftrightarrow11⋮n+2\)
\(\Leftrightarrow n+2\inƯ\left(11\right)\)
\(\Leftrightarrow\orbr{\begin{cases}n+2=1\\n+2=11\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}n=-1\left(loại\right)\\n=9\end{cases}}\)
Vậy ..
a/ \(\left(x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x^2+1=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-3\\x^2=-1\left(loại\right)\end{cases}}\)
Vậy ....
b/ \(\left(x+7\right)\left(x^2-36\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+7=0\\x^2-36=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-7\\x^2=36\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-7\\x=6or=-6\end{cases}}\)
Vậy ...
tim so nguyen n
a)n+7 chia het cho n +2
b) 9-n chia het cho n-3
c)n^2 +n+17 chia het cho n +1
d) n ^ 2 +25 chia het cho n+2
e) 2n+7 chia het cho n+1
g)3n ^2 +5 chia het cho n -1
h) 3n+7 chia het cho 2n+1
i)2n^2 +11 chia het cho 3n+1
giup minh nha mai minh phai nop roi
a.n + 7 chia hết cho n+2
=> n + 2 + 5 chia hết cho n+2
=> 5 chia hết cho n+2
=> n + 2 thuộc tập hợp các số : 5;-5;1;-1
=> n thuộc tập hợp các số : 3;-7;-1;-3
b.9-n chia hết cho n-3
=> 6 - n - 3 chia hết cho n-3
=> 6 chia hết cho n-3
=> n -3 thuộc tập hợp các số : 1;-1;6;-6
=> n thuộc tập hợp các sô : 4;2;9;-3
Giải hết ra dài lắm
k mk nha