A=1.2+2.3+3.4+.....+79.80
B=2.4+4.6+6.8+....+48.50
2.4+4.6+6.8+...+98.100/1.2+2.3+3.4+...+49.50. Tính
\(\frac{2.4+4.6+6.8+...+98.100}{1.2+2.3+3.4+...+49.50}=\frac{4.\left(1.2+2.3+3.4+...+49.50\right)}{1.2+2.3+3.4+...+49.50}=\frac{4}{1}=4\)
Bài 15 tính tổng a) A= 1/1.2 +1/2.3 +1/3.4 +...+1/2011.2012 b) B= 1/2.4 +1/4.6 + 1/6.8+.,.......+1/2010.2012
A = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/2011 - 1/2012
A = 1 - 1/2012
A = 2011/2012
B = 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 +...+ 1/2010 - 1/2012
B = 1/2 - 1/2012
B = 1005/2012
a) \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2011\cdot2012}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\)
\(A=1-\dfrac{1}{2012}\)
\(A=\dfrac{2011}{2012}\)
b) \(B=\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{2010\cdot2012}\)
\(B=\dfrac{1}{2}\cdot\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{2010\cdot2012}\right)\)
\(B=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2010}-\dfrac{1}{2012}\right)\)
\(B=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{2012}\right)\)
\(B=\dfrac{1}{2}\cdot\dfrac{1005}{2012}\)
\(B=\dfrac{1005}{4024}\)
a)B= 2.4 + 4.6 +6.8 +.....+18.20
b)C= 1.3+3.5+5.7+......+19.21
c) G= 1.2+2.3+3.4+......+99.100
Tính nhanh
a) 6B = 2.4.6 + 4.6.(8-2) + 6.8.(10-4) + ... + 18.20.(22-16)
6B = 2.4.6 + 4.6.8 - 2.4.6 + 6.8.10 - 4.6.8 +...+ 18.20.22 - 16.18.20
6B = 18.20.
B = (18.20.22) : 6
B = 1320
Mấy bài kia tương tự, cần giải luôn không bạn? Nhưng hơi mất thời gian
tính A=5/2.4+5/4.6+5/6.8+...+5/98.100
B=-2/1.2+-2/2.3+-2/3.4+...+-2/2015.2016
mình k viết lại đề nhé =)
câu A
A :5 =1/2.4+1/4.6+1/6.8+..+1/98.100
A:5 =1/2-1/4+1/4-1/6+1/6-1/8+...+1/98-1/100
A:5 =1/2-1/100 =49/100
A=49/100 x5 =49/20
câu B tươg tự nha =)
Ta có:
A =5/2(1/2-1/4 + 1/4-1/6+ 1/6..........1/98-1/100)
A =5/2 (1/2 -1/100)
A =5/2 x 49/100
A = 49/20
tính
a, 1/1.2+1/2.3+1/3.4+....+1/999.1000
b, B= 1/2.4+1/4.6+1/6.8+1/8.10
a, 1/1.2+1/2.3+1/3.4+...+1/999.1000
= 1/1-1/2+1/2-1/3+1/3-1/4+....+1/999-1/1000
= 1/1-1/1000
= 999/1000
b, 1/2.4+1/4.6+1/6.8+1/8.10
= 1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10
= 1/2-1/10
= 4/10 =2/5
Rút gọn:
a, 1.2+2.4+3.6+4.8+5.10 / 3.4+6.8+9.12+12.16+15.20
b,12.13+24.26+36+39 / 24.26+48.52+72.78
c,2.3+4.6+14.21 / 3.5+6.10+21.35
Bài tập: Tính tổng
a) A = 1.2+2.3+3.4+...+98.99
b) B = 1.3+3.5+5.7+...+99.101
c) S = 1.4+4.7+7.10+...+2017.2020
d) E= 2.4+4.6+6.8+...+98.100
e) S= 1.2.3+2.3.4+3.4.5+...+98.99.100
f) S= 1.2.3.4+2.3.4.5+3.4.5.6+...+19.20.21.22
a/
3A=1.2.3+2.3.3+3.4.3+...+98.99.3=
=1.2.3+2.3.(4-1)+3.4.(5-2)+...+98.99.(100-97)=
=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-97.98.99+98.99.100=
=98.99.100=> A=98.33.100
b
6B=1.3.6+3.5.6+5.7.6+...+99.101.6=
=1.3.(5+1)+3.5.(7-1)+5.7.(9-3)+...+99.101.(103-97)=
=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=
=1.3+99.101.103=> (3+99.101.103):6
c/
9S=1.4.9+4.7.9+7.10.9+...+2017.2020.9=
=1.4.(7+2)+4.7.(10-1)+7.10.(13-4)+...+2017.2020.(2023-2014)=
=1.2.4+1.4.7-1.4.7+4.7.10--4.7.10+7.10.13-...-2014.2017.2020+2017.2020.2023=
=1.2.4+2017.2020.2023=> S=(2.4+2017.2020.2023):9
Dạng tổng quát: tính tổng các tích có quy luật: các thừa số của các tích lập thành dãy số cách đều. các thừa số đầu tiên của số hạng liền sau cũng chính là các thừa số sau cùng của số hạng liền trước thì ta nhân tổng với số k
Số k được tính theo quy luật \(k=\left(n+1\right)xd\)
Trong đó: n: số thừa số của 1 số hạng
d: Khoảng cách giữa hai thừa số liền kề trong mỗi số hạng
Chúc em học tốt
Tính nhanh:
a/ 2.4 + 4.6 + 6.8+........ + 18.20
b/ 1.3 + 3.5 + 5.7+.......... 19+20
c/ 1.2.3 + 2.3.4 + 3.4.5 + ........+ 18.19.20
d/ 1.2 + 2.3 + 3.4 + ......... + 99.100
a) \(A=2.4+4.6+6.8+...+18.20\)
\(6A=2.4.6+4.6.\left(8-2\right)+6.8.\left(10-4\right)+...+18.20.\left(22-16\right)\)
\(6A=2.4.6+4.6.8-2.4.6+6.8.10-4.6.8+...+18.20.22-16.18.20\)
\(6A=18.20.22\)
\(A=\frac{18.20.22}{6}=\frac{7920}{6}=1320\)
d/ Đặt : A = 1.2 + 2.3 + 3.4 + ......... + 99.100
=> 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + ..... + 99.100.(101 - 98)
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + 99.100.101
=> 3A = 99.100.101
=> A = 99.100.101 / 3
=> A = 333300
A= 1/1.2+1/2.3+1/3.4+...+1/49.50
A=2/1.3+2/3.5+2/5.7+....+2/49.51
A=1/2.4+1/4.6+1/6.8+....+1/18+20
Giúp e ạ,nhanh e tik ( ◜‿◝ )♡( ◜‿◝ )♡
\(A=\) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}\)
\(A=\frac{49}{50}\)
\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.50}\)
A= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
A = \(\frac{1}{1}-\frac{1}{51}=\frac{50}{51}\)