Những câu hỏi liên quan
NN
Xem chi tiết
AH
17 tháng 12 2021 lúc 23:45

Lời giải:
a. Gọi $d$ là ƯCLN $(n+2, n+3)$

$\Rightarrow n+2\vdots d, n+3\vdots d$

$\Rightarrow (n+3)-(n+2)\vdots d$ hay $1\vdots d$

$\Rightarrow d=1$
Vậy $ƯCLN(n+2, n+3)=1$ hay $n+2, n+3$ nguyên tố cùng nhau.

b.

Gọi $d$ là ƯCLN $(2n+3, 3n+5)$

$\Rightarrow 2n+3\vdots d$ và $3b+5\vdots d$

$\Rightarrow 2(3n+5)-3(2n+3)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $(2n+3,3n+5)=1$ nên 2 số này nguyên tố cùng nhau.

Bình luận (0)
AT
Xem chi tiết
DH
5 tháng 3 2017 lúc 14:39

\(\frac{52}{75}=\frac{52.101}{75.101}=\frac{5252}{7575};\frac{52}{75}=\frac{52.10101}{75.10101}=\frac{525252}{757575}\)

\(\frac{13}{15}=\frac{13.101}{15.101}=\frac{1313}{1515};\frac{13}{15}=\frac{13.10101}{15.10101}=\frac{131313}{151515}\)

\(\frac{ab}{cd}=\frac{101ab}{101cd}=\frac{abab}{cdcd};\frac{ab}{cd}=\frac{10101ab}{10101cd}=\frac{ababab}{cdcdcd}\)

ai k minh minh k lai

Bình luận (0)
TN
5 tháng 3 2017 lúc 14:38

chia các vế với 1001 và 100001

Bình luận (0)
PT
5 tháng 3 2017 lúc 14:38

a) \(\frac{52}{75}=\frac{52.101}{75.101}=\frac{52.10101}{75.10101}\)
Câu b,c tương tự, bạn tự làm nó sẽ thú vị hơn đấy
-Do it yourself-

Bình luận (0)
TA
Xem chi tiết
OL
10 tháng 6 2016 lúc 13:50

S = 1 / 50 + 1 / 51 +...+ 1 / 99 > 1 / 99 + 1 / 99 +...+ 1 / 99 = 50 / 99 > 50 / 100 = 1/2

Bình luận (0)
NT
Xem chi tiết
NQ
26 tháng 11 2015 lúc 10:25

\(S=\frac{1}{50}+\frac{1}{51}+.....+\frac{1}{99}>\frac{1}{99}+\frac{1}{99}+...+\frac{1}{99}=\frac{50}{99}>\frac{50}{100}=\frac{1}{2}\)

Bình luận (0)
DJ
Xem chi tiết
DH
Xem chi tiết
BK
13 tháng 3 2016 lúc 19:55

ta có 1/50>1/100    

         1/51>1/100

       ..........

          1/99>1/100

  vậy S>1/100*50=1/2

suy ra S>1/2

Bình luận (0)
DV
Xem chi tiết
XO
14 tháng 3 2021 lúc 16:09

Ta có S = \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{74}+\frac{1}{75}+\frac{1}{76}+\frac{1}{77}+...+\frac{1}{99}\)

\(=\left(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{74}\right)+\left(\frac{1}{75}+\frac{1}{76}+\frac{1}{77}+...+\frac{1}{99}\right)\)

               25 số hạng                                                    25 số hạng

\(>\left(\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}\right)+\left(\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}\right)\)

\(=25.\frac{1}{75}+25.\frac{1}{100}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)(ĐPCM)

Vậy S > 1/2

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
DN
14 tháng 3 2016 lúc 19:53

ta có:1/50>1/100

         1/51>1/100

          ...............

          1/99>1/100

=>S>50*1/100

=>S>1/2(đpcm)

Bình luận (0)
DN
14 tháng 3 2016 lúc 19:55

1/50>1/100

1/51>1/100

...................

1/99>1/100

=>S>50*1/100(do từ 1/50 đến 1/99 có 50 số hạng)

=>S>1/2

Bình luận (0)
NQ
14 tháng 3 2019 lúc 21:21

EM có thể tham khảo video này:

https://www.youtube.com/watch?v=fBjsHQKClNA&index=7&list=PLq0mRSDfY0BAMTu98fNHi-Lg_E9BWDYhV

Bình luận (0)
VN
Xem chi tiết