chứng minh rằng tổng hoặc hiệu của 1 số tự nhiên với 1 phân số tối giản là 1 phân số tối giản
chứng minh rằng tổng hoặc hiệu của một số tự nhiên với một phân số tối giản là một phân số tối giản
chứng tỏ rằng tổng hoặc hiệu của một số tự nhiên với một phân số tối giản là một phân số tối giản
CMR: Tổng hoặc hiệu của 1 số tự nhiên với 1 phân số tối giản là 1 phân số tối giản.
Chứng minh tổng của 1 số tự nhiên và 1 phân số tối giản là phân số tối giản
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
Chứng minh rằng tổng của số tự nhiên với một phân số tối giản là một phân số tối giani
CMR: Tổng hoặc hiệu của 1 số tự nhiên với 1 số hữu tỉ tối giản là 1 số hữu tỉ tối giản.
a) Tìm số tự nhiên n để phân số M= n-1/n-2( n thuộc Z, n khác 2) là phân số tối giản
b) Chứng minh rằng với mọi số tự nhiên n, A = 2n+1/2n+3 là phân số tối giản
Chứng minh rằng với mọi số tự nhiên n phân số A=4n+1/6n+1 là phân số tối giản
Gọi UCLN(4n+1,6n+1) là d
Ta có: 4n+1 chia hết cho d => 3(4n+1) chia hết cho d => 12n + 3 chia hết cho d
6n+1 chia hết cho d => 2(6n+1) chia hết cho d => 12n + 2 chia hết cho d
=> 12n + 3 - (12n + 2) chia hết cho d
=> 1 chia hết cho d => d = 1
=> UCLN(4n+1,6n+1) = 1
Vậy \(\frac{4n+1}{6n+1}\)là p/s tối giản