Những câu hỏi liên quan
EA
Xem chi tiết
DT
Xem chi tiết
NL
28 tháng 3 2015 lúc 19:47

câu 1: 100005

câu 2: dư 1

câu 3: bạn ghi lại đề câu này đi ko hiểu

câu 4: n=300

Bình luận (0)
MQ
27 tháng 6 2015 lúc 8:55

1/ số đó là 100005

Bình luận (0)
CN
Xem chi tiết
IY
13 tháng 6 2020 lúc 20:37

Bài 2:

Ta có: M = a2+ab+b2 -3a-3b-3a-3b +2001

=> 2M = ( a2 + 2ab + b2) -4.(a+b) +4 + (a2 -2a+1)+(b2 -2b+1) + 3996

2M= ( a+b-2)2 + (a-1)2 +(b-1)+ 3996

=> MinM = 1998 tại a=b=1

Bình luận (0)
 Khách vãng lai đã xóa
IY
13 tháng 6 2020 lúc 20:44

Câu 3: 

Ta có: P= x2 +xy+y2 -3.(x+y) + 3

=> 2P = ( x2 + 2xy +y2) -4.(x+y) + 4 + (x2 -2x+1) +(y2 -2y+1)

2P = ( x+y-2)2 +(x-1)2+(y-1)2

=> Min= 0 tại x=y=1

Bình luận (0)
 Khách vãng lai đã xóa
IY
13 tháng 6 2020 lúc 19:42

Bài1:

Ta có: a2+ b2+c2+d2= a.(b+c+d)

=> a2+b2+c2+d2 -ab -ac -ad =0

=> 4a2+ 4b2+4c2+4d2-4ab -4ac -4ad=0

=> ( a2 - 4ab +4b2) + ( a2- 4ac + 4c2) +( a2 -4ad+ 4d2) + a2=0

=> ( a-2b)2 + ( a-2c)2 + (a-2d)2 + a2 =0

=> ....

KL: a=b=c=d=0

Bình luận (0)
 Khách vãng lai đã xóa
CL
Xem chi tiết
KN
15 tháng 1 2017 lúc 9:40

câu 1: AB=14 cm

câu 2:(-2016;2016)

câu 3: -50

câu 4:=200

câu 5 ko có đề nên ko thể làm đc

câu 6:(a;a+b)=1

câu 7:132=169

câu8:-32

câu 9:n=1

câu 10:luôn chia hết cho 3

Bình luận (0)
NN
15 tháng 1 2017 lúc 9:36

2=-2016;2016

3=-50

4=200

5=1

6=169

7=-32

Bình luận (0)
NN
Xem chi tiết
TM
27 tháng 2 2017 lúc 15:44

sao dài thế @@ chộp bài nào làm bài nấy ha

Câu 1:

Giả sử \(\sqrt{7}\) là số hữu tỉ thì \(\sqrt{7}=\frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản, a;b thuộc Z, b khác 0

\(\frac{a}{b}=\sqrt{7}\Rightarrow\left(\frac{a}{b}\right)^2=7\Rightarrow\frac{a^2}{b^2}=7\Rightarrow a^2=7b^2\)=> a2 chia hết cho 7 (1)

=> a chia hết cho 7 => a=7k với k thuộc Z

Thay a=7k vào a2=7b2 ta được 49k2=7b2 => 7k2=b2 => b2 chia hết cho 7 => b chia hết cho 7 (2)

Từ (1) và (2) => phân số a/b chưa tối giản trái với giả thiết ban đầu

=>\(\sqrt{7}\) là số vô tỉ (đpcm)

Bình luận (0)
TM
27 tháng 2 2017 lúc 15:51

Ta có: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2acbd+b^2d^2+a^2d^2-2adbc+b^2c^2\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\) (1)

Mặt khác: \(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\) (2)

Từ (1) và (2) => đpcm

Bình luận (0)
TM
27 tháng 2 2017 lúc 16:05

\(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)

\(\Leftrightarrow a^2c^2+b^2c^2+a^2d^2+b^2d^2\ge a^2c^2+2abcd+b^2d^2\)

\(\Leftrightarrow a^2c^2+b^2c^2+a^2d^2+b^2d^2-a^2c^2-2abcd-b^2d^2\ge0\)

\(\Leftrightarrow a^2d^2-2abcd+b^2c^2\ge0\Leftrightarrow\left(ad-bd\right)^2\ge0\) luôn đúng!

Bình luận (0)
H24
Xem chi tiết
NN
11 tháng 4 2017 lúc 10:18

Câu 1: 

Giả sử \(\sqrt{7}\) là số hữu tỉ \(\Rightarrow\sqrt{7}=\frac{m}{n}\) (tối giản)

\(\Rightarrow7=\left(\frac{m}{n}\right)^2=\frac{m^2}{n^2}\) Hay \(7n^2=m^2\left(1\right)\)

Đẳng thức này chứng tỏ \(m^2⋮7\) Mà \(7\) là số nguyên tố nên \(m⋮7\)

Đặt \(m=7k\left(k\in Z\right)\) ta có: \(m^2=49k^2\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(7n^2=49k^2\) nên \(n^2=7k^2\left(3\right)\)

Từ \(\left(3\right)\) ta lại có: \(n^2⋮7\) và vì \(7\) là số nguyên tố nên \(n⋮7\)

\(\Rightarrow\hept{\begin{cases}m⋮7\\n⋮7\end{cases}}\) nên phân số \(\frac{m}{n}\) không tối giản, trái với giả thiết

Vậy \(\sqrt{7}\) không phải là số hữu tỉ

\(\Leftrightarrow\sqrt{7}\) là số vô tỉ (Điều phải chứng minh)

Bình luận (0)
SG
3 tháng 2 2017 lúc 13:40

trời ơi nhìn hoa cả mắt

Bình luận (0)
NQ
5 tháng 2 2017 lúc 20:20

bạn nên ghi ra từng câu thì mọi người mới làm cho chứ ai rảnh

Bình luận (0)
HN
Xem chi tiết
TL
Xem chi tiết
H24
31 tháng 12 2016 lúc 13:55

Bài 1: -50

Bài 2:x=-2016;2016

Bình luận (0)
H24
31 tháng 12 2016 lúc 13:56

1,-50

2,2016;-2016

3,0

4,5

5,3

6,0

7,104

9,3

Bình luận (0)
PG
31 tháng 12 2016 lúc 13:58

1) -50

2) -2016;2016

3) 0

4) ...

5) 3. Vị 3 * 3 * 3 = 27

6) ...

7) 104

8) ...

9) 6

10) ...

Bình luận (0)
DC
Xem chi tiết