Những câu hỏi liên quan
MT
Xem chi tiết
TM
16 tháng 1 2016 lúc 22:07

Ta có :

A = 7 + 73 + 75 + 77 + ... + 71997 + 71999

   = (7 + 73) + (75 + 77) + ... + (71997 + 71999)

   = 7 (1 + 72) + 75 (1 + 72) + ... + 71997 (1 + 72)

   = 7 . 50 + 75 . 50 + ... + 71997 . 50

   = 350 + 74 . 350 + ... + 71996 . 350

   = 35 . 10 + 74 . 35 . 10 + ... + 71996 . 35 . 10

   = 35 (10 + 74 . 10 + ... + 71996 . 10) chia hết cho 35

Vậy A chia hết cho 35 (ĐPCM).

Bình luận (0)
PN
13 tháng 2 2020 lúc 9:20

Đáp án của tôi cũng giống như bạn Trần Hùng Minh vậy .

Bình luận (0)
 Khách vãng lai đã xóa
DT
25 tháng 2 2020 lúc 9:40

A = 7+7^3+...+7^1999

A = 7.(1+49)+...+7^1997.(1+49)

A = 7.50+...+7^1997.50

A = 350+...+7^1996.7.50

A = 350+...+7^1996.350

A = 350.(1+...+7^1996) = 35.10.(1+...+7^1996) => A chia hết cho 35

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
VZ
9 tháng 1 2016 lúc 13:14

A = 7 + 73 + 75 + ... + 71999 = (7 + 73) + (75 + 77) + ..... + (71997 +71999)
A = 7(1 + 72) + 75(1 + 72) + ... + 71997(1 + 72)
A = 7.50 + 75 .50 + 79.50 + ... + 71997.50
=> A Chia hết cho 5 (1) 0.5đ
A = 7 + 73 + 75 + ... + 71999 = 7.( 70 + 72 + 74 + ... + 71998)
=> A Chia hết cho 7 (2) 0.5đ
Mà ƯCLN(5,7) = 1 => A Chia hết cho 35

Bình luận (0)
PM
9 tháng 1 2016 lúc 13:14

khoooooooooooooooooooooooooooooooooooooooooooo

Bình luận (0)
NQ
Xem chi tiết
XH
26 tháng 8 2017 lúc 19:19

56454

Bình luận (0)
H24
26 tháng 8 2017 lúc 19:21

=56454 nha bn

chúc các bn hok tốt

Bình luận (0)
TV
26 tháng 8 2017 lúc 19:21

56454 nha bạn

Bình luận (0)
NT
Xem chi tiết
AH
14 tháng 9 2024 lúc 22:44

Lời giải:

Hiển nhiên $A\vdots 7$ do các số hạng đều chia hết cho 7.

Lại có:

$A=(7+7^3)+(7^5+7^7)+....+(7^{1997}+7^{1999})$

$=7(1+7^2)+7^5(1+7^2)+...+7^{1997}(1+7^2)$
$=(1+7^2)(7+7^5+...+7^{1997})$
$=50(7+7^5+...+7^{1997})\vdots 5$

Vậy $A\vdots 7, A\vdots 5$. Mà $(7,5)=1$

$\Rightarrow A\vdots 35$

Bình luận (0)
LT
Xem chi tiết
DL
4 tháng 12 2015 lúc 21:38

A=1999+1999^2+...+1999^1998=1999(1+1999)+...+1999^1997(1+1999)=1999*2000+...+1999^1997*2000=(1999+...+1999^1997)*2000(chia hết cho 2000)

b tương tự, biến đổi 35=5*7, có chia hết cho 7 rồi thì chứng minh chia hết cho 5

Bình luận (0)
ND
Xem chi tiết
NP
22 tháng 11 2017 lúc 21:54
Ta có: A= 7×(1+7^2)+7^5×(1+7^2)+...7^1997×(1×7^2) A=7×50+7^5×50+...7^1997×50 A=350+7^4×350+...7^1996×350 A=35×10+7^4×35×10+...+7^1996×35×10 A=35×(10+7^4×10+...+7^1996×10) chia hết cho 35
Bình luận (0)
NP
22 tháng 11 2017 lúc 21:56

Ta có:

A= 7×(1+7^2)+7^5×(1+7^2)+...7^1997×(1×7^2)

A=7×50+7^5×50+...7^1997×50

A=350+7^4×350+...7^1996×350

A=35×10+7^4×35×10+...+7^1996×35×10

A=35×(10+7^4×10+...+7^1996×10) chia hết cho 35

Bình luận (0)
NP
22 tháng 11 2017 lúc 21:57

Phần trước của tớ bị sai nha !

Bình luận (0)
LD
Xem chi tiết
DH
21 tháng 7 2017 lúc 10:43

Sửa đề : ý b cm chia hết cho 55 chứ ko phải 35 nhé

a ) \(5^{2000}+5^{1998}=5^{1998}\left(5^2+1\right)=5^{1998}.26=5^{1998}.13.2⋮13\) (đpcm)

b ) \(7^{2016}+7^{2015}-7^{2014}=7^{2014}\left(7^2+7-1\right)=7^{2014}.55⋮55\) (đpcm)

Bình luận (0)
TA
Xem chi tiết
TH
1 tháng 10 2017 lúc 14:41

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

Bình luận (0)
JM
Xem chi tiết
H24
26 tháng 8 2017 lúc 19:58

\(A=7+7^3+7^5+......+7^{1999}\)

\(A=\left(7+7^3\right)+\left(7^5+7^7\right)+....+\left(7^{1997}+7^{1999}\right)\)

\(A=\left(7+7^3\right)+7^4.\left(7+7^3\right)+......+7^{1996}.\left(7+7^3\right)\)

\(A=350+7^4.350+.......+7^{1996}.350\)

\(A=350.\left(1+7^4+......+7^{1996}\right)\)

\(Do\)\(350⋮35\Rightarrow350.\left(1+7^4+......+7^{1996}\right)⋮35\)

\(\Rightarrow A=7+7^3+.......+7^{1999}⋮35\)

Bình luận (0)