Cho A=7+7^3+7^5+.......................7^999
Chứng minh rằng A chia hết cho 35
CHO :A=7+7^3+7^5+...+7^1999
CHỨNG MINH RẰNG A CHIA HẾT CHO 35
Ta có :
A = 7 + 73 + 75 + 77 + ... + 71997 + 71999
= (7 + 73) + (75 + 77) + ... + (71997 + 71999)
= 7 (1 + 72) + 75 (1 + 72) + ... + 71997 (1 + 72)
= 7 . 50 + 75 . 50 + ... + 71997 . 50
= 350 + 74 . 350 + ... + 71996 . 350
= 35 . 10 + 74 . 35 . 10 + ... + 71996 . 35 . 10
= 35 (10 + 74 . 10 + ... + 71996 . 10) chia hết cho 35
Vậy A chia hết cho 35 (ĐPCM).
Đáp án của tôi cũng giống như bạn Trần Hùng Minh vậy .
A = 7+7^3+...+7^1999
A = 7.(1+49)+...+7^1997.(1+49)
A = 7.50+...+7^1997.50
A = 350+...+7^1996.7.50
A = 350+...+7^1996.350
A = 350.(1+...+7^1996) = 35.10.(1+...+7^1996) => A chia hết cho 35
cho A=7+73+75+77+...+71999. Chứng minh rằng A chia hết cho 35
A = 7 + 73 + 75 + ... + 71999 = (7 + 73) + (75 + 77) + ..... + (71997 +71999)
A = 7(1 + 72) + 75(1 + 72) + ... + 71997(1 + 72)
A = 7.50 + 75 .50 + 79.50 + ... + 71997.50
=> A Chia hết cho 5 (1) 0.5đ
A = 7 + 73 + 75 + ... + 71999 = 7.( 70 + 72 + 74 + ... + 71998)
=> A Chia hết cho 7 (2) 0.5đ
Mà ƯCLN(5,7) = 1 => A Chia hết cho 35
khoooooooooooooooooooooooooooooooooooooooooooo
Chứng minh A=7+73+75+…+71999 Chứng minh rằng A chia hết cho 35.
Cho A = 7 + 73 + 75 + ...... + 71999 . CHỨNG MINH RẰNG A CHIA HẾT CHO 35
Lời giải:
Hiển nhiên $A\vdots 7$ do các số hạng đều chia hết cho 7.
Lại có:
$A=(7+7^3)+(7^5+7^7)+....+(7^{1997}+7^{1999})$
$=7(1+7^2)+7^5(1+7^2)+...+7^{1997}(1+7^2)$
$=(1+7^2)(7+7^5+...+7^{1997})$
$=50(7+7^5+...+7^{1997})\vdots 5$
Vậy $A\vdots 7, A\vdots 5$. Mà $(7,5)=1$
$\Rightarrow A\vdots 35$
chứng minh rằng :
a, A= ( 1999+ 19992 + 19993+ ...19991998) chia hết cho 2000
b,B= 7+73+75+...+71999 chia hết cho 35
A=1999+1999^2+...+1999^1998=1999(1+1999)+...+1999^1997(1+1999)=1999*2000+...+1999^1997*2000=(1999+...+1999^1997)*2000(chia hết cho 2000)
b tương tự, biến đổi 35=5*7, có chia hết cho 7 rồi thì chứng minh chia hết cho 5
Chứng minh rằng: (7 + 7 mũ 3 + 7 mũ 5 + ....... + 7 mũ 1999 ) chia hết cho 35
Ta có:
A= 7×(1+7^2)+7^5×(1+7^2)+...7^1997×(1×7^2)
A=7×50+7^5×50+...7^1997×50
A=350+7^4×350+...7^1996×350
A=35×10+7^4×35×10+...+7^1996×35×10
A=35×(10+7^4×10+...+7^1996×10) chia hết cho 35
Chứng minh rằng:
a,5^2000+5^1998 chia hết cho 13
b,7^2016+7^2015-7^2014 chia hết cho 35
Sửa đề : ý b cm chia hết cho 55 chứ ko phải 35 nhé
a ) \(5^{2000}+5^{1998}=5^{1998}\left(5^2+1\right)=5^{1998}.26=5^{1998}.13.2⋮13\) (đpcm)
b ) \(7^{2016}+7^{2015}-7^{2014}=7^{2014}\left(7^2+7-1\right)=7^{2014}.55⋮55\) (đpcm)
Bài 1 :
Cho A = 13 + \(13^2+13^3+13^4+13^5+13^6.\) Chứng minh rằng A \(\)chia hết cho 2 .
Bài 2 :
Cho C = \(2+2^2+2^3+.....+2^{2011}+2^{2012}\). Chứng minh rằng C chia hết cho 3 .
Bài 3 :
Chứng minh rằng : A = \(2^1+2^2+2^3+.....+2^{59}+2^{60}\)chia hết cho 7
Bài 4 :
Cho A = \(7+7^3+7^5+....+7^{1999}\) . Chứng minh rằng A chia hết cho 35
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
cho A = 7 + 73 + 75 + ... + 71999. chứng minh A chia hết cho 35
\(A=7+7^3+7^5+......+7^{1999}\)
\(A=\left(7+7^3\right)+\left(7^5+7^7\right)+....+\left(7^{1997}+7^{1999}\right)\)
\(A=\left(7+7^3\right)+7^4.\left(7+7^3\right)+......+7^{1996}.\left(7+7^3\right)\)
\(A=350+7^4.350+.......+7^{1996}.350\)
\(A=350.\left(1+7^4+......+7^{1996}\right)\)
\(Do\)\(350⋮35\Rightarrow350.\left(1+7^4+......+7^{1996}\right)⋮35\)
\(\Rightarrow A=7+7^3+.......+7^{1999}⋮35\)