Những câu hỏi liên quan
TY
Xem chi tiết
LM
26 tháng 3 2018 lúc 20:28

a)1/1x2+1/2x3+....+1/2003x2004

=1-1/2+1/2-1/3+...+1/2003+1/2004

=1-1/2004

=2004/2004-1/2004

=2003/2004

b)1/1x3+1/3x5+...+1/2003x2005

=1-1/3+1/3-1/5+....+1/2003+1/2005

=1-1/2005

=2005/2005-1/2005

=2004/2005

Bình luận (0)
LA
26 tháng 1 2019 lúc 21:48

2004/2005

Bình luận (0)
TN
19 tháng 3 2020 lúc 8:02

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\)\(\frac{1}{2003.2004}\)

=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2003}-\frac{1}{2004}\)

=\(\frac{1}{1}-\frac{1}{2004}=\frac{2003}{2004}\)

b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\)\(\frac{1}{2003.2005}\)

=\(\frac{2}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003.2005}\right)\)

=\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2003.2005}\right)\)

=\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\right)\)

=\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{2005}\right)\)

=\(\frac{1}{2}.\frac{2004}{2005}\)

=\(\frac{1002}{2005}\)

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
TL
3 tháng 3 2020 lúc 13:13

a) \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{2003\cdot2004}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2003}-\frac{1}{2004}\)

\(=1-\frac{1}{2004}=\frac{2003}{2004}\)

b) Đặt A=\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{2003\cdot2005}\)

\(2A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{1}{5\cdot7}+....+\frac{2}{2003\cdot2005}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\)

\(2A=1-\frac{1}{2005}\)

\(2A=\frac{2004}{2005}\)

\(A=\frac{2004}{2005}:2=\frac{2004}{2005}\cdot\frac{1}{2}=\frac{1002}{2005}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
3 tháng 3 2020 lúc 13:14

a)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2003.2004}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2003}-\frac{1}{2004}\)

\(=\frac{1}{1}-\frac{1}{2004}\)

\(\Rightarrow=\frac{2003}{2004}\)

b)

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003+2005}\)

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\)

\(=\frac{1}{1}-\frac{1}{2005}\)

\(\Rightarrow=\frac{2004}{2005}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
3 tháng 3 2020 lúc 13:17

\(a,\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2003.2004}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2003}-\frac{1}{2004}\)

\(=1-\frac{1}{2004}\)

\(=\frac{2004}{2004}-\frac{1}{2004}=\frac{2003}{2004}\)

b) Đặt \(B=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2003.2005}\)

\(\Rightarrow2B=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2003.2005}\)

\(\Rightarrow2B=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2003}-\frac{1}{2005}\)

\(\Rightarrow2B=1-\frac{1}{2005}\)

\(\Rightarrow2B=\frac{2005}{2005}-\frac{1}{2005}\)

\(\Rightarrow2B=\frac{2004}{2005}\)

\(\Rightarrow B=\frac{2004}{2005}:2=\frac{2004}{2005}.\frac{1}{2}\)

\(\Rightarrow B=\frac{1002}{2005}\)

Vậy...

hok tốt!!

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
DT
19 tháng 3 2019 lúc 20:06

\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{2003.2005}\right)\)

=\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2003}-\frac{1}{2005}\right)\)
=\(\frac{1}{2}\left(1-\frac{1}{2005}\right)=\frac{1}{2}.\frac{2004}{2005}=\frac{1002}{2005}\)

Bình luận (0)

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2003.2005}=\)

\(=\frac{2}{2.1.3}+\frac{2}{2.3.5}+\frac{2}{2.5.7}+....+\frac{2}{2.2003.2005}\)

\(=\frac{1}{2}.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2003.2005}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2003}-\frac{1}{2005}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{2005}\right)\)

\(=\frac{1}{2}.\frac{2004}{2005}\)

\(=\frac{1002}{2005}\)

Chúc bạn học tốt nha!

Bình luận (0)
VN
19 tháng 3 2019 lúc 20:10

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2003.2005}\)

\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2003.2005}\right)\)

\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2003}-\frac{1}{2005}\right)\)

\(\frac{1}{2}.\left(1-\frac{1}{2005}\right)\)

\(\frac{1}{2}.\frac{2004}{2005}\)

\(\frac{2004}{2.2005}=\frac{1002}{2005}\)

Bình luận (0)
SS
Xem chi tiết
H24
30 tháng 6 2016 lúc 22:27

=>2B=2/1.3 +2/3.5 +2/5.7+...+2/2003.2005

=>2B=1-1/3+1/3-1/5+1/5-1/7+...+1/2003-1/2005

=>2B=-1/2005

=>B=-1/2005:2=-1/4010

Vậy B= -1/4010

Bình luận (0)
DC
Xem chi tiết
NK
6 tháng 3 2016 lúc 0:26

Ta có:

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2003.2004}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2003}-\frac{1}{2004}\)

\(=1-\frac{1}{2004}=\frac{2003}{2004}\)

b,

\(\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2003.2005}\right).\frac{1}{2}\)

\(\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2003}-\frac{1}{2005}\right).\frac{1}{2}\)

\(=\left(1-\frac{1}{2005}\right).\frac{1}{2}=\frac{2004}{2005}.\frac{1}{2}=\frac{1002}{2005}\)

Nhớ nha bạn

Bình luận (0)
RS
Xem chi tiết
DH
11 tháng 3 2018 lúc 20:14

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2003.2004}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2003}-\frac{1}{2004}\)

\(=1-\frac{1}{2004}\)

\(=\frac{2003}{2004}\)

b) Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+....+\frac{1}{2003.2005}\)

\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2003.2005}\)

              \(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2003}-\frac{1}{2005}\)

                \(=1-\frac{1}{2005}\)

                 \(=\frac{2004}{2005}\)

\(\Rightarrow A=\frac{2004}{2005}:2=\frac{1002}{2005}\)

Bình luận (0)
HN
11 tháng 3 2018 lúc 20:15

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..........+\frac{1}{2003.2004}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-........-\frac{1}{2003}+\frac{1}{2003}-\frac{1}{2004}\)

\(1-\frac{1}{2004}\)

\(\frac{2004}{2004}-\frac{1}{2004}=\frac{2003}{2004}\)

b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..........+\frac{1}{2003.2005}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...........-\frac{1}{2003}+\frac{1}{2003}-\frac{1}{2005}\)

\(1-\frac{1}{2005}\)

\(\frac{2005}{2005}-\frac{1}{2005}=\frac{2004}{2005}\)

Bình luận (0)
NS
11 tháng 3 2018 lúc 20:15

a, 1/ 1 . 2 + 1/2 . 3 + 1/3 . 4 + ... + 1/2003 . 2004

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2003 - 1/2004

= 1 - 1/2004

= 1 + ( -1 / 2004 )

= 2004 /2004 + ( -1 / 2004 )

= 2003 /2004

b, = 1/2 x ( 1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + .... + 1/2003 - 1/2005

= 1/2 x ( 1 - 1/2005 )

= 1/2 x ( 2005 /2005 - 1/2005 )
= 1/2 x 2004/2005

= 1002 / 2005

Tíck nha !!

Bình luận (0)
CN
Xem chi tiết
TN
27 tháng 3 2016 lúc 9:19

\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2003}-\frac{1}{2005}=\frac{1}{x}\)

\(\Rightarrow1-\frac{1}{2005}=\frac{1}{x}\)

\(\Rightarrow\frac{2004}{2005}=\frac{1}{x}\)

tới đây tự làm nhé

Bình luận (0)
CN
27 tháng 3 2016 lúc 13:30

Nhưng sao suy ra x đc vậy pạn

Bình luận (0)
PH
Xem chi tiết
DH
18 tháng 2 2017 lúc 19:20

a ) \(\frac{4}{20}+\frac{16}{42}+\frac{6}{15}+\frac{-3}{5}+\frac{2}{21}+\frac{-10}{21}+\frac{3}{20}\)

\(=\frac{4}{20}+\frac{8}{21}+\frac{2}{5}-\frac{3}{5}+\frac{2}{21}+\frac{-10}{21}+\frac{3}{20}\)

\(=\left(\frac{4}{20}+\frac{3}{20}\right)+\left(\frac{8}{21}+\frac{2}{21}-\frac{10}{21}\right)+\left(\frac{2}{5}-\frac{3}{5}\right)\)

\(=\frac{7}{20}+0+\frac{-1}{5}=\frac{7-4}{20}=\frac{3}{20}\)

b ) \(\frac{42}{46}+\frac{250}{186}+\frac{-2121}{2323}+\frac{-125125}{143143}\)

\(=\frac{21}{23}+\frac{-21}{23}+\frac{-125}{143}\)

\(=0+\frac{-125}{143}=-\frac{125}{143}\)

Bình luận (0)
TQ
18 tháng 2 2017 lúc 19:09

bài 2

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2003.2004}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2003}-\frac{1}{2004}\)
=\(1-\frac{1}{2004}=\frac{2003}{2004}\)

Bình luận (0)
DH
18 tháng 2 2017 lúc 19:13

a ) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2003.2004}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2003}-\frac{1}{2004}\)

\(=1-\frac{1}{2004}=\frac{2003}{2004}\)

b ) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2003.2005}\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{2003}-\frac{1}{2005}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{2005}\right)=\frac{1}{2}.\frac{2004}{2005}=\frac{1002}{2005}\)

Bình luận (0)
VN
Xem chi tiết
PQ
25 tháng 4 2018 lúc 19:39

Ta có : 

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)

\(A=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\frac{50}{51}\)

\(A=\frac{25}{17}\)

Vậy \(A=\frac{25}{17}\)

Chúc bạn học tốt ~ 

Bình luận (0)
NH
25 tháng 4 2018 lúc 19:52

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\frac{50}{51}\)

\(A=\frac{25}{17}\)

\(B=\frac{21}{4}\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)

\(B=\frac{21}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)

\(B=\frac{21}{4}\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)

\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)

\(B=\frac{21}{4}.33.\frac{4}{21}\)

\(B=\left(\frac{21}{4}.\frac{4}{21}\right).33\)

\(B=33\)

\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(C=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(C=\frac{1}{2}.\frac{98}{99}\)

\(C=\frac{49}{99}\)

Bình luận (0)
H24
25 tháng 4 2018 lúc 19:52

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{21}\)

\(A=1-\frac{1}{51}\)

\(A=\frac{51}{51}-\frac{1}{51}\)

\(A=\frac{50}{51}\)

\(A=\frac{21}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)

\(A=\frac{21}{4}.\left(\frac{33.101}{12.101}+\frac{33.101}{20.101}+\frac{33.101}{30.101}+\frac{33.101}{42.101}\right)\)

\(A=\frac{21}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)

\(A=\frac{21}{4}.33\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)

\(A=\frac{21}{4}.33\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)

\(A=\frac{21}{4}.33\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(A=\frac{21}{4}.33\left(\frac{1}{3}-\frac{1}{7}\right)\)

\(A=\frac{21}{4}.33.\frac{4}{21}\)

\(A=33\)

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(A=\frac{1}{2}.\frac{98}{99}\)

\(A=\frac{49}{99}\)

Bình luận (0)