Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TD
Xem chi tiết
H24
2 tháng 1 2018 lúc 21:39

\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}=\frac{1+5\left(1 +5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}=5+\frac{1}{1+5+5^2+...+5^8} \)

\(B=\frac{1+3+3^2+....+3^9}{1+3+3^2+....+3^8}=\frac{1+3\left(1+3+3^2+....+3^8\right)}{1+3+3^2+....+3^8}=3+\frac{1}{1+3+3^2+....+3^8}\)

\(=5+\frac{1}{1+3+3^2+....+3^8}-2\)  

Có: \(\frac{1}{1+5+5^2+...+5^8}>0\)              và      \(\frac{1}{1+3+3^2+....+3^8}-2< 0\)

\(\Rightarrow A>B\)

Bình luận (0)
H24
Xem chi tiết
BY
8 tháng 2 2016 lúc 22:46

Vế phải lớn hơn

Bình luận (0)
H24
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
A1
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
H24
14 tháng 2 2016 lúc 14:45

ve phai lon hon

Bình luận (0)
VL
Xem chi tiết
H24
2 tháng 5 2019 lúc 11:10

a) A=\(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)

ta có :

 \(A=\left(1-\frac{1}{179}\right)+\left(1-\frac{1}{180}\right)+\left(1+\frac{2}{181}\right)\)

 \(\Rightarrow A=\left(1+1+1\right)-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)\)

\(\Rightarrow A=3-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)< 3\)

Vậy \(A< 3\)

Bình luận (0)
KN
2 tháng 5 2019 lúc 11:16

a. Ta có :

\(\frac{178}{179}< 1\left(\frac{1}{179}\right)\)

\(\frac{179}{180}< 1\left(\frac{1}{180}\right)\)

\(\frac{183}{181}>1\left(\frac{3}{181}\right)\left(1\right)\)

Mà \(\frac{3}{181}>\frac{1}{179}+\frac{1}{180}\left(=\frac{359}{32220}< \frac{3}{181}\right)\left(2\right)\)

Từ \(\left(1\right)\&\left(2\right)\Rightarrow\frac{178}{179}+\frac{179}{180}+\frac{183}{181}< 1+1+1\)

Vậy \(A< 3\)

Bình luận (0)
H24
2 tháng 5 2019 lúc 11:16

b) \(A=\frac{1+5+5^2+5^3+...+5^{10}+5^{11}}{1+5+5^2+5^3+...+5^9+5^{10}}=5^{11}\)

bn rút gọn là dc  

\(B=\frac{1+7+7^2+7^3+...+7^{10}+7^{11}}{1+7+7^2+7^3+...+7^9+7^{10}}=7^{11}\)

\(A=5^{11},B=7^{11}\)

\(\Rightarrow7^{11}>5^{11}\Rightarrow B>A\)

hk tốt #

Bình luận (0)