Những câu hỏi liên quan
HH
Xem chi tiết
YS
5 tháng 5 2016 lúc 19:46

= 5- 5/3 + 5/3 - 5/5 + ... + 5/93 - 5/95

= 5 -5/95

= 90/95

Đ/s: 90/95

Bình luận (0)
CN
5 tháng 5 2016 lúc 19:48

5/1.3 + 5/3.5 +5/5.7+....+5/91.93 + 5/93.95

= 5/2 . (1-1/3+1/3-1/5+1/5-1/7+....+1/91-1/93+1/93-1/95)

= 5/2 . (1-1/95)

= 5/2 . 94/95

= 47/19

Nhớ k nha

Bình luận (0)
LV
Xem chi tiết
PK
5 tháng 5 2016 lúc 19:52

Ta có:

\(A=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{91.93}+\frac{5}{93.95}=5\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{91.93}+\frac{1}{93.95}\right)=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{91.93}+\frac{2}{93.95}\right)\)

\(\Rightarrow A=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{91}-\frac{1}{93}+\frac{1}{93}-\frac{1}{95}\right)=\frac{5}{2}\left(1-\frac{1}{95}\right)=\frac{5}{2}.\frac{94}{95}=\frac{47}{19}\)

Vậy \(A=\frac{47}{19}\)

Bình luận (0)
MX
5 tháng 5 2016 lúc 19:49

\(A=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{93.95}\)

\(A=5\cdot\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-....-\frac{1}{95}\right)\)

\(A=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{95}\right)=\frac{5}{2}\cdot\frac{94}{95}=\frac{47}{19}\)

Bình luận (0)
PK
5 tháng 5 2016 lúc 19:53

Bạn Muôn cảm xúc làm tắt quá !

Bình luận (0)
RM
Xem chi tiết
VK
5 tháng 5 2016 lúc 19:41

\(\frac{2}{5}A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{93.95}\)

\(\frac{2}{5}A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{93}-\frac{1}{95}\)

\(\frac{2}{5}A=1-\frac{1}{95}=\frac{94}{95}\)

\(A=\frac{47}{19}\)

Bình luận (0)
CN
5 tháng 5 2016 lúc 19:44

A= 5/1.3 +5/3.5 +5/5.7+....+5/91.93 + 5/93.95

A= 5/2 . (1-1/3+1/3-1/5+1/5-1/7+...+1/91-1/93+1/93-1/95)

A=5/2. (1-1/95)

A= 5/2 . 94/95

A=47/19

Nhớ k nha

Bình luận (0)
VT
Xem chi tiết
DH
7 tháng 3 2017 lúc 19:41

\(\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+....+\frac{7}{99.101}\)

\(=\frac{7}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\right)\)

\(=\frac{7}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{7}{2}\left(1-\frac{1}{101}\right)=\frac{7}{2}.\frac{100}{101}=\frac{350}{101}\)

Bình luận (0)

\(\frac{350}{101}\)

Bình luận (0)
LS
Xem chi tiết
PH
Xem chi tiết
VL
19 tháng 7 2018 lúc 15:54

=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101

=1-1/101

=100/101

k cho mình nha

Bình luận (0)
DH
19 tháng 7 2018 lúc 15:55

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)

Bình luận (0)
PT
19 tháng 7 2018 lúc 15:57

TA CÓ \(\frac{1}{1.3}+\frac{1}{3.5}+.....+\frac{1}{99.101}\)

              \(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\)

                \(=\frac{1}{1}-\frac{1}{101}\)

                  \(=\frac{100}{101}\)

Bình luận (0)
H24
Xem chi tiết
NP
29 tháng 6 2016 lúc 9:45

\(A=\frac{7}{1.3}+\frac{7}{3.5}+.............+\frac{7}{99.101}\)

\(=\frac{7}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+........+\frac{2}{99.101}\right)\)

\(=\frac{7}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.......+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{7}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{7}{2}.\frac{100}{101}\)

\(=\frac{350}{101}\)

Bình luận (0)
QA
Xem chi tiết
NU
17 tháng 3 2018 lúc 13:09

\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{19\cdot21}-\frac{x}{14}=\frac{2}{-7}\)

\(\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{19\cdot21}\right)-\frac{x}{14}=\frac{2}{-7}\)

\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)-\frac{x}{14}=\frac{2}{-7}\)

\(\frac{1}{2}\left(1-\frac{1}{21}\right)-\frac{x}{14}=\frac{2}{-7}\)

\(\frac{1}{2}\cdot\frac{20}{21}-\frac{x}{14}=\frac{2}{-7}\)

\(\frac{10}{21}-\frac{x}{14}=\frac{2}{-7}\)

\(\frac{x}{14}=\frac{10}{21}-\frac{2}{-7}\)

\(\frac{x}{14}=\frac{16}{21}\)

\(\Rightarrow x\cdot=21=14\cdot16\)

\(\Rightarrow x\cdot21=224\)

\(\Rightarrow x=\frac{224}{21}\)

Bình luận (0)
NT
Xem chi tiết
DH
18 tháng 5 2021 lúc 21:48

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}\)

\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(B=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\)

\(B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(B=1-\frac{1}{101}=\frac{100}{101}\)

Bình luận (0)
 Khách vãng lai đã xóa
DH
18 tháng 5 2021 lúc 21:51

\(C=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+...+\frac{3^2}{340}\)

\(C=3\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}\right)\)

\(C=3\left(\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+...+\frac{20-17}{17.20}\right)\)

\(C=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right)\)

\(C=3\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{27}{20}\)

\(D=\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+...+\frac{7}{99.101}\)

\(D=\frac{7}{2}B=\frac{7}{2}.\frac{100}{101}=\frac{350}{101}\)

Bình luận (0)
 Khách vãng lai đã xóa
DH
18 tháng 5 2021 lúc 21:53

\(E=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\)

\(3E=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)

\(3E-E=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\right)\)

\(2E=1-\frac{1}{3^8}\)

\(E=\frac{3^8-1}{2.3^8}\)

\(G=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{99}\right)\)

\(G=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{98}{99}=\frac{1}{99}\)

Bình luận (0)
 Khách vãng lai đã xóa