Tìm giá trị nguyên của n để phân số M=6n-3/3n+1 có giá trị là số nguyên
Tìm các giá trị nguyên của n để phân số 6n-3/3n+1 có giá trị là số nguyên
Tìm các giá trị nguyên của n để phân số (6n-3) ( 3n+1) có giá trị là số nguyên
=>\(\frac{6n-2-1}{3n-1}\)=>\(\frac{2\left(3n-1\right)-1}{3n-1}\)=2\(\frac{1}{3n-1}\)
=>để (6n-1)/(3n-1) nguyên thì 1/3n-1 nguyên
=>1 chia hết cho 3n-1
=>3n-1 thuộc 1,-1
ta có : 6n-3 / 3n+1
= 6n+2-5 / 3n+1
= 6n+2 / 3n+1 - 5/3n+1
= 2 - 5/3n+1
Vì 2 là số nguyên nên để 6n-3/3n+1 là số nguyên thì 5/3n+1 phải là số nguyên
Để 5/3n+1 là số nguyên thì 5 chia hết cho 3n+1
=> 3n + 1 thuộc Ư(5)
mà Ư(5) = { -1 ; 1 ; -5 ; 5 }
=> 3n+1 thuộc { -1 ; 1 ; -5 ; 5 }
=> 3n thuộc { -2 ; 0 ; -6 ; 4 }
vì 3n chia hết cho 3 với mọi số nguyên n
=> 3n thuộc { 0 ; -6 }
=> n thuộc { 0 ; -2 }
ta có bảng sau
n | 0 | -2 |
6n-3 | -3 | -15 |
3n+1 | 1 | -5 |
6n3/3n+1 | -3/1=-3 thuộc Z ( thỏa mãn | -15/-5=3 thuộc Z ( thỏa mãn ) |
Vậy tập hợp giá trị n thỏa mãn là { 0 ; -2 }
Tìm các giá trị nguyên của 6n - 3/3n +1 để phân số có giá trị là số nguyên.
Đặt \(A=\frac{6n-3}{3n+1}=\frac{\left(6n+2\right)-2-3}{3n+1}=\frac{2.\left(3n+1\right)-5}{3n+1}\)
\(\Rightarrow A=\frac{2.\left(3n+1\right)}{3n+1}-\frac{5}{3n+1}=2-\frac{5}{3n+1}\)
\(A\in Z\Leftrightarrow\frac{5}{3n+1}\in Z\Leftrightarrow5⋮\left(3n+1\right)\Leftrightarrow\left(3n+1\right)\inƯ\left(5\right)\)
=> 3n + 1 \(\in\){1;-1;5;-5}
Ta có bảng :
3n+1 | 1 | -1 | 5 | -5 |
n | 0 | \(-\frac{2}{3}\) | \(\frac{4}{3}\) | -2 |
Mà \(n\in Z\)=>\(n\in\){0;-2} để phân số \(\frac{6n-3}{3n+1}\in Z\)
để \(\frac{6n-3}{3n+1}\)là số nguyên thì 6n-3\(⋮\)3n-1
ta có \(\orbr{\begin{cases}6n-3⋮3n+1\\3n+1⋮3n+1\end{cases}}\Rightarrow\orbr{\begin{cases}6n-3⋮3n+1\\2\left(3n+1\right)⋮3n+1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}6n-3⋮3n+1\\6n+2⋮3n+1\end{cases}}\)
\(\Rightarrow\left(6n+2\right)-\left(6n-3\right)\)\(⋮3n+1\)
\(5⋮3n+1\)
=>3n+1\(\in\)Ư(5)={-1,-5,1,5}
ta co bang sau
...
Ta có: \(\frac{6n-3}{3n+1}\)=\(\frac{2\left(3n+1\right)-5}{3n+1}\)= 2-\(\frac{5}{3n-1}\)
Từ đó để \(\frac{6n-3}{3n+1}\) \(\varepsilon\)Z thì 3n+1 \(\varepsilon\)Ư(5)
Ta có bảng sau
3n+1 | -5 | -1 | 1 | 5 |
n | -2 | \(\frac{-2}{3}\)(Loại) | 0 | \(\frac{4}{3}\)(Loại) |
Vậy với n\(\varepsilon\){-2;0} thì \(\frac{6n-3}{3n+1}\varepsilon\)Z
Tìm các giá trị nguyên của n để các phân số sau có giá trị là số nguyên
a)A=3n+4/n-1
b)6n-3/3n+1
a)Để A có giá trị nguyên thì 3n+4 chia hết cho n-1
=>3(n-1)+7 chia hết cho n-1
=> n-1 thuộc Ư(7)={1;7;-1;-7}
Phần cuối bn tự làm nha
Còn câu b làm tương tự
a) Từ đề bài, ta có:
\(A=\frac{3n+4}{n-1}=\frac{3\left(n-1\right)+7}{n-1}=3+\frac{7}{n-1}\)
\(\Rightarrow\left(n-1\right)\inƯ\left(7\right)\)
\(\Rightarrow\left(n-1\right)\in\left\{\pm1;\pm7\right\}\)
\(\Rightarrow n\in\left\{2;0;-6;8\right\}\)
b) \(\frac{6n-3}{3n+1}=\frac{2\left(3n+1\right)+5}{3n+1}=2+\frac{5}{3n+1}\)
\(\Rightarrow\left(3n+1\right)\inƯ\left(5\right)\)
\(\Rightarrow\left(3n+1\right)\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{\frac{-2}{3};0;-2;\frac{4}{3}\right\}\)
Tìm các giá trị nguyên của n để các phân số sau có giá trị là số nguyên
a)A=3n+4/n-1
b)6n-3/3n+1
tìm giá trị nguyên n để phân số A=\(\dfrac{6n-3}{3n+1}\)có giá trị nguyên
Em đăng vào môn Toán nhé!
tìm giá trị nguyên n để phân số A=\(\dfrac{6n-3}{3n+1}\)có giá trị nguyên
A = \(\dfrac{6n-3}{3n+1}\) ( đk : 3n + 1 # 0 ⇒ n # -1/3)
A \(\in\) Z ⇔ 6n - 3 ⋮ 3n + 1
⇒ 6n + 2 - 5 ⋮ 3n + 1
⇒ 2.( 3n + 1) - 5 ⋮ 3n + 1
⇒ 5 ⋮ 3n + 1
⇒ 3n + 1 \(\in\) { -5; -1; 1; 5}
⇒ n\(\in\) {-2; -2/3; 0; 4/3}
vì n \(\in\) Z nên n \(\in\) { -2; 0}
Vậy n \(\in\) { -2; 0}
Cho phân số :M=6n-1/3n+2 (n là số nguyên)
a) Tìm n để M có giá trị là số nguyên
b) Tìm n để M có giá trị nhỏ nhất
để M là số nguyên thì 6n-1chia hết cho 3n+2
6n-1 chia hết cho 3n+2
mà 3n+ 2 luôn chia hết cho 3n+2 suy ra 2.(3n+2) cũng chia hết cho 3n+2
suy ra (6n-1)-2. (3n+2) chia hết cho 3n+2
6n-1 - 6n-4 chia hết cho 3n+2
-5 chia hết cho 3n+2
3n+2 thuộc Ước của -5 thuộc (1,5,-1,-5)
3n thuộc (-1,3,-3,-8)
n thuộc (-1/3,1,-1,-8/3)
mà n là số nguyên nên n thuộc (1 và -1)
để M có gt nhỏ nhất thì n = -1
câu a mình nghĩ mình đúng nhưng câu b thì mk chưa chắc. Xin lỗi nhìu nhoa
Cho phân số M = 6n - 1 / 3n+2 (n thuộc Z)
a, tìm số nguyên n để M có giá trị nguyên
b, tìm số nguyên n để M có giÁ TRỊ NHỎ NHẤT . tìm giá trị nhỏ nhất đó
mk giải câu a thui nha
để \(\frac{6n-1}{3n+2}\)là số nguyên thì:
(6n-1) sẽ phải chia hết cho(3n+2)
mà (3n+2) chja hết cho (3n+2)
=> 2(3n+2) cx sẽ chia hết cho (3n+2)
<=> (6n+4) chia hết cho (3n+2)
mà (6n-1) chia hết cho (3n+2)
=> [(6n+4)-(6n-1)] chja hết cho (3n+2)
(6n+4-6n+1) chja hết cho 3n+2
5 chia hết cho3n+2
=> 3n+2 \(\in\){1,5,-1,-5}
ta có bảng
3n+2 | 1 | 5 | -1 | -5 |
3n | 3 | 7 | 1 | -3 |
n | 1 | -1 |
vậy....
bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Tìm các giá trị nguyên của n để phân số \(\frac{6n-3}{3n+1}\)có giá trị là số nguyên.