Những câu hỏi liên quan
NP
Xem chi tiết
DB
Xem chi tiết
H24
5 tháng 10 2023 lúc 20:01

a) Để chứng minh a) ta cần chứng minh rằng góc ADC bằng góc BEC.

Vì AD là đường phân giác của góc BAC, nên ta có:

∠DAB = ∠DAC (1)

Tương tự, vì BE là đường phân giác của góc ABC, nên ta có:

∠CBA = ∠CBE (2)

Từ (1) và (2), ta có:

∠DAB + ∠CBA = ∠DAC + ∠CBE

∠DAB + ∠CBA = ∠BAC + ∠ABC

∠DAB + ∠CBA = ∠ABC + ∠BAC

Do đó, góc ADC bằng góc BEC.

Tiếp theo, để chứng minh rằng góc A bằng góc B, ta sử dụng định lý phụ của đường phân giác:

∠DAB = ∠DAC

∠EBA = ∠EBC

Vì ∠ADC = ∠BEC (đã chứng minh ở trên), nên ta có:

∠DAC + ∠ADC = ∠DAB + ∠ABC

∠DAB + ∠ABC = ∠DAC + ∠ADC

Từ đây, suy ra ∠A = ∠B.

Vậy, điều phải chứng minh a) đã được chứng minh.

b) Để chứng minh b), ta cần chứng minh rằng góc ADB bằng góc BEC.

Từ ∠ADB = ∠BEC (đã chứng minh ở a)), ta có:

∠ADB + ∠BEC = ∠BEC + ∠BEC

∠ADB + ∠BEC = 2∠BEC

∠ADB = ∠BEC

Do đó, góc ADB bằng góc BEC.

Tiếp theo, ta có:

∠A + ∠B + ∠C = 180° (định lý tổng các góc trong tam giác)

∠ADB + ∠B + ∠BEC = 180°

∠BEC + ∠B + ∠BEC = 180° (vì ∠ADB = ∠BEC)

2∠BEC + ∠B = 180°

2∠BEC = 180° - ∠B

∠BEC = (180° - ∠B) / 2

∠BEC = 90° - ∠B/2

∠BEC = 90° - ∠A/2 (vì ∠A = ∠B)

∠A/2 + ∠B/2 + ∠C = 90°

∠A/2 + ∠B/2 + ∠C = 90° - ∠A/2

∠A/2 + ∠A/2 + ∠C = 90° - ∠A/2

∠A + ∠C = 90° - ∠A/2

∠A + ∠C + ∠A/2 = 90°

2∠A + ∠C = 180°

∠A + ∠C = 180° - ∠A

∠A + ∠C = ∠B

∠A + ∠B + ∠C = 180°

∠A + ∠B + ∠C = 120° + 60°

∠A + ∠B + ∠C = 180°

Do đó, ∠A + ∠B = 120°.

Vậy, điều phải chứng minh b) đã được chứng minh.

Bình luận (0)
TN
Xem chi tiết
H24
15 tháng 10 2017 lúc 19:53

a)

  A B C 100*

=> Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}\) = 180o

100o + \(\widehat{B}+\widehat{C}\) = 180o

\(\widehat{B}+\widehat{C}\) = 180o - 100o

\(\widehat{B}+\widehat{C}\) = 80o

Góc B = (80o+50o):2 = 65o

=> \(\widehat{C}\) = 65o - 50o = 15o

Vậy \(\widehat{B}\) = 65o ; \(\widehat{C}\) = 15o

b)

  80* A B C

Ta có : \(\widehat{3A}+\widehat{B}+\widehat{2C}\) = 180o

\(\widehat{3A}+\widehat{2C}\) = 180o - 80o

\(\widehat{3A}+\widehat{2C}\) = 100o

=> \(\widehat{A}\) = 100o:(3+2).3 = 60o

\(\widehat{C}\) = 100o - 60o = 40o

Vậy \(\widehat{A}\) = 60o ; \(\widehat{C}\) = 40o

Bình luận (0)
NL
Xem chi tiết
NL
Xem chi tiết
QL
Xem chi tiết
HM
25 tháng 9 2023 lúc 16:44

a) Ta cần tính cạnh BC và hai góc \(\widehat B,\widehat C.\)

Áp dụng định lí cosin, ta có:

\(\begin{array}{l}B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\\ \Leftrightarrow B{C^2} = {14^2} + {23^2} - 2.14.23.\cos {125^o}\\ \Rightarrow BC \approx 33\end{array}\)

Áp dụng định lí sin, ta có:

\(\begin{array}{l}\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow \frac{{33}}{{\sin {{125}^o}}} = \frac{{23}}{{\sin B}} = \frac{{14}}{{\sin C}}\\ \Rightarrow \sin B = \frac{{23.\sin {{125}^o}}}{{33}} \approx 0,57\\ \Rightarrow \widehat B \approx {35^o} \Rightarrow \widehat C \approx {20^o}\end{array}\)

b) Ta cần tính góc A và hai cạnh AB, AC.

Ta có: \(\widehat A = {180^o} - \widehat B - \widehat C = {180^o} - {64^o} - {38^o} = {78^o}\)

Áp dụng định lí sin, ta có:

\(\begin{array}{l}\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow \frac{{22}}{{\sin {{78}^o}}} = \frac{{AC}}{{\sin {{64}^o}}} = \frac{{AB}}{{\sin {{38}^o}}}\\ \Rightarrow \left\{ \begin{array}{l}AC = \sin {64^o}.\frac{{22}}{{\sin {{78}^o}}} \approx 20,22\\AB = \sin {38^o}.\frac{{22}}{{\sin {{78}^o}}} \approx 13,85\end{array} \right.\end{array}\)

c) Ta cần tính góc A và hai cạnh AB, BC.

Ta có: \(\widehat A = {180^o} - \widehat B - \widehat C = {180^o} - {120^o} - {28^o} = {32^o}\)

Áp dụng định lí sin, ta có:

\(\begin{array}{l}\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow \frac{{BC}}{{\sin {{32}^o}}} = \frac{{22}}{{\sin {{120}^o}}} = \frac{{AB}}{{\sin {{28}^o}}}\\ \Rightarrow \left\{ \begin{array}{l}BC = \sin {32^o}.\frac{{22}}{{\sin {{120}^o}}} \approx 13,5\\AB = \sin {28^o}.\frac{{22}}{{\sin {{120}^o}}} \approx 12\end{array} \right.\end{array}\)

d) Ta cần tính số đo ba góc \(\widehat A,\widehat B,\widehat C\)

Áp dụng hệ quả của định lí cosin, ta có:

 \(\begin{array}{l}\cos A = \frac{{A{C^2} + A{B^2} - B{C^2}}}{{2.AB.AC}};\cos B = \frac{{B{C^2} + A{B^2} - A{C^2}}}{{2.BC.BA}}\\ \Rightarrow \cos A = \frac{{{{32}^2} + {{23}^2} - {{44}^2}}}{{2.32.23}} = \frac{{ - 383}}{{1472}};\cos B = \frac{{{{44}^2} + {{23}^2} - {{32}^2}}}{{2.44.23}} = \frac{{131}}{{184}}\\ \Rightarrow \widehat A \approx {105^o},\widehat B = {44^o}36'\\ \Rightarrow \widehat C = {30^o}24'\end{array}\)

Bình luận (0)
SK
Xem chi tiết
NH
19 tháng 5 2017 lúc 15:59

Tích vô hướng của hai vectơ và ứng dụng

Bình luận (0)
BV
19 tháng 5 2017 lúc 16:46

\(\widehat{B}=180^o-\left(40^o+120^o\right)=20^o\).
A C B 35 H
\(AH=AB.sinB=35.sin20^o\cong12cm.\)
\(\widehat{HCA}=180^o-120^o=60^o\).
\(AH=AC.sin60^o\Rightarrow AC=\dfrac{AH}{sin60}=\dfrac{12}{\dfrac{\sqrt{3}}{2}}=8\sqrt{3}\).
Áp dụng định lý Cô-sin:
\(BC=\sqrt{AB^2+AC^2-2.AB.AC.sinA}\)\(=\sqrt{35^2+\left(8\sqrt{3}\right)^2-2.35.8\sqrt{3}.cos40^o}\cong26cm\).
Vậy \(a=26cm;b=8\sqrt{3}cm,\)\(\widehat{B}=20^o\).

Bình luận (0)
MD
Xem chi tiết
QL
Xem chi tiết
HM
25 tháng 9 2023 lúc 16:50

a) Áp dụng định lí cosin, ta có:

 \(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc.\cos A\\ \Leftrightarrow {a^2} = {8^2} + {5^2} - 2.8.5.\cos {120^ \circ } = 129\\ \Rightarrow a = \sqrt {129} \end{array}\)

Áp dụng định lí sin, ta có:

\(\begin{array}{l}\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} \Rightarrow \frac{{\sqrt {129} }}{{\sin {{120}^ \circ }}} = \frac{8}{{\sin B}} = \frac{5}{{\sin C}}\\ \Rightarrow \left\{ \begin{array}{l}\sin B = \frac{{8.\sin {{120}^ \circ }}}{{\sqrt {129} }} \approx 0,61\\\sin C = \frac{{5.\sin {{120}^ \circ }}}{{\sqrt {129} }} \approx 0,38\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\widehat B \approx 37,{59^ \circ }\\\widehat C \approx 22,{41^ \circ }\end{array} \right.\end{array}\)

b) Diện tích tam giác ABC là: \(S = \frac{1}{2}bc.\sin A = \frac{1}{2}.8.5.\sin {120^ \circ } = 10\sqrt 3 \)

c) 

+) Theo định lí sin, ta có: \(R = \frac{a}{{2\sin A}} = \frac{{\sqrt {129} }}{{2\sin {{120}^ \circ }}} = \sqrt {43} \)

+) Đường cao AH của tam giác bằng: \(AH = \frac{{2S}}{a} = \frac{{2.10\sqrt 3 }}{{\sqrt {129} }} = \frac{{20\sqrt {43} }}{{43}}\)

Bình luận (0)