chứng minh rằng 2n+1 và 3n+1 / với n thuộc số tự nhiên \ 2 số nguyên tố cùng nhau
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1.Tìm số tự nhiên n để:
a, 2n+1 và 7n+2 là 2 số nguyên tố cùng nhau.
b,9n+24 và 3n+4 là 2 số nguyên tố cùng nhau.
2.Chứng minh rằng 2n+1 và 3n+1 (n là số tự nhiên) là 2 số nguyên tố cùng nhau.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
Chứng minh rằng:
a) Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b) Hi số ller liên tiếp là hai số nguyên tố cùng nhau
c) 2n+1 và 3n + 1 (n thuộc N) là hai số nguyên tố cùng nhau
d) 2n+5 và 3n+7 nguyên tố cùng nhau
a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau
b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau
tick nha
Chứng minh rằng với mọi số tự nhiên n thì 2n+1 và 3n+2 là hai số nguyên tố cùng nhau
Gọi d là ƯCLN(2n+1, 3n+2)
Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d
=> 2(3n+2) - 3(2n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau
cre: h
Chứng minh rằng với mọi số tự nhiên n thuộc N* các cặp số nguyên tố cùng nhau
Câu 1: n và n+1
Câu2: 2n+2 và 2n+3
Câu 3:n và 2n+1
Câu4: 2n+1 và 3n+1
a) Gọi d là UCLN ( n ; n+1 )
n+1 chia hết cho d
n chia hết cho d
-> n+1-n chia hết cho d
-> 1chia hết cho d
=>N và n+1 là 2 số nguyên tố cùng nhau
=>ĐPCM
Còn mấy câu còn lại đâu
Chứng minh rằng số tự nhiên n là các số nguyên tố cùng nhau:
a) 2n+1 và 3n+2
b)2n+2 và 5n+3 c) 3n+1 và 4n+1
a)nếu 2n+1 và 3n+2 là các số nguyên tố cùng nhau thì chúng phải có ƯCLN =1
giả sử ƯCLN(2n+1,3n+2)=d
=>2n+1 chia hết cho d , 3n+2 chia hết cho d
=>3(2n+1)chia hết cho d , 2(3n+2)chia hết cho d
=>6n+3 chia hết cho d, 6n +4 chia hết cho d
=>(6n+4) - (6n+3) chia hết cho d
=>6n+4-6n-3=1 chia hết cho d
=>d=1
vậy ƯCLN(2n+1,3n+2)=1 (đpcm)
đpcm là điều phải chứng minh
1/ chứng minh rằng 2 số sau nguyên tố cùng nhau : 2n + 5 và 3n + 7 ( với n là số tự nhiên)
chứng minh rằng với mọi số tự nhiên n thì 2n+1 và 3n+2 là hai số nguyên tố cùng nhau
Đặt \(ƯCLN\left(2n+1,3n+2\right)=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)\(\Rightarrow1⋮d\)
Mà \(d\inℕ^∗\)\(\Rightarrow d=1\)
Từ đó \(ƯCLN\left(2n+1,3n+2\right)=1\)
Và ta kết luận với mọi \(n\inℕ\)thì \(2n+1\)và \(3n+2\)nguyên tố cùng nhau.
Ta có 2n+1 =6n+3
3n+2=6n+4
gọi d là ước của 6n+3 và 6n+4
Ta có (6n+3)-(6n+4) chia hết cho d
=> 1 chia hết cho d
=> d=1
vậy 2n+1 and n+2 là 2 số nguyên tố cùng nhau
Tìm số tự nhiên n chứng minh rằng 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau
Gọi ƯCLN(2n + 1,3n + 2) = d
=> Ta có: \(\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)=> \(\hept{\begin{cases}3.\left(2n+1\right)⋮d\\2.\left(3n+2\right)⋮d\end{cases}}\)=> \(\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)
=> \(\left(6n+4\right)-\left(6n+3\right)⋮d\)
=> \(6n+4-6n-3⋮d\)
=> \(1⋮d\)
=> \(d=1\)
=> 2n + 1 ; 2n + 2 là 2 số nguyên tố cùng nhau
Với mọi số tự nhiên n, chứng minh rằng các cặp số sau nguyên tố cùng nhau:
a) 2n + 3, n + 2
b) n + 1, 3n +4
c) 2n + 3, 3n + 4
Gọi d là ước chung lớn nhất của 2 số. Nhiệm vụ của ta là chứng minh d=1.
a) 2n+3, n+2 \(⋮d\)
\(\Rightarrow\left(2n+3\right)-\left(n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
b) n+1, 3n+4
\(\Rightarrow\left(3n+4\right)-3\left(n+1\right)⋮d\)
\(\Rightarrow1⋮d\)
c) 2n+3, 3n+4
\(\Rightarrow3\left(2n+3\right)-2\left(3n+4\right)⋮d\)
\(\Rightarrow1⋮d\)
𝓪, 𝓖𝓸̣𝓲 𝓤̛𝓒𝓛𝓝\(\left(2n+3,n+2\right)=d\)
\(\Rightarrow2n+3⋮d\)
\(\Rightarrow n+2⋮d\Rightarrow2.\left(n+2\right)⋮d\Rightarrow2n+4⋮d\)
\(\Rightarrow2n+4-2n+3⋮d\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\)𝓤̛𝓒𝓛𝓝\(\left(2n+3,n +2\right)=1\)
𝓥𝓪̣̂𝔂 \(2n+3,n+2\) 𝓵𝓪̀ 𝓱𝓪𝓲 𝓼𝓸̂́ 𝓷𝓰𝓾𝔂𝓮̂𝓷 𝓽𝓸̂́ 𝓬𝓾̀𝓷𝓰 𝓷𝓱𝓪𝓾
𝓫, 𝓖𝓸̣𝓲 𝓤̛𝓒𝓛𝓝\(\left(n+1,3n+4\right)=d\)
\(\Rightarrow3n+4⋮d\)
\(\Rightarrow n+1⋮d\Rightarrow3\left(n+1\right)⋮d\Rightarrow3n+3⋮d\)
\(\Rightarrow3n+4-\left(3n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\)𝓤̛𝓒𝓛𝓝\(\left(n+1,3n+4\right)=1\)
𝓥𝓪̣̂𝔂 \(n+1,3n+4\) 𝓵𝓪̀ 𝓱𝓪𝓲 𝓼𝓸̂́ 𝓷𝓰𝓾𝔂𝓮̂𝓷 𝓽𝓸̂́ 𝓬𝓾̀𝓷𝓰 𝓷𝓱𝓪𝓾
𝓑𝓪̣𝓷 𝓸̛𝓲, 𝓬𝓱𝓸 𝓶𝓲̀𝓷𝓱 𝓼𝓾̛̉𝓪 𝓵𝓪̣𝓲 𝓸̛̉ 𝓬𝓪̂𝓾 𝓪 𝓷𝓱𝓪, 𝓬𝓱𝓸̂̃ 2𝓷+4-(2𝓷+3) 𝓹𝓱𝓪̉𝓲 𝓽𝓱𝓮̂𝓶 𝓷𝓰𝓸𝓪̣̆𝓬 𝓸̛̉ 2𝓷+3 𝓷𝓱𝓪!