Tìm số tự nhiên x và y biết:
\(\frac{4}{x}\)= \(\frac{y}{21}\)= \(\frac{28}{49}\)
Tìm x, y biết \(\frac{-4}{x}=\frac{y}{-21}=\frac{28}{49}\)
Tìm các số tự nhiên x và y biết : 4/x = y/21=28/49
\(\dfrac{4}{x}=\dfrac{y}{21}=\dfrac{28}{49}\\ \Rightarrow\dfrac{4}{x}=\dfrac{y}{21}=\dfrac{4}{7}\)
\(\dfrac{4}{x}=\dfrac{4}{7}\Rightarrow x=7\)
\(\dfrac{y}{21}=\dfrac{4}{7}\Rightarrow\dfrac{y}{21}=\dfrac{12}{21}\Rightarrow y=12\)
tìm các số tự nhiên x và y biết 4/x = y/ 21 = 28/49
vì 4/x=28/49 nên x.28=4.49=196 ( dấu . là dấu nhân , vì sao x.28=4.49 cấp 2 học )
x=196:28=7
vì y/21=28/49 nên y.49=21.28=588
y=588:49=12
\(\frac{4}{x}=\frac{y}{21}=\frac{28}{49}\)
\(\Rightarrow\frac{4}{x}=\frac{12}{21}=\frac{28}{49}\)
\(\Rightarrow\frac{4}{7}=\frac{12}{21}=\frac{28}{49}\)
Vậy x = 7 , y = 12
Cách làm:
y = \(\frac{28\times21}{49}=12\)
x = \(\frac{21\times4}{12}=7\)
Công thức : nhân chéo
#Hok tốt !
awioufWQCB
Cho các số tự nhiên x,y,z,t nhỏ nhất thỏa mãn \(\frac{x}{y}=\frac{5}{14},\frac{y}{z}=\frac{21}{28},\frac{z}{t}=\frac{6}{11}\). Tìm x,y,x,t
Giúp mình nha
Tìm x,y,z biết :
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5 x + y - 2z = 28
b)\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x + 3y -z = 125
c)\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x + y + z = 49
d) \(\frac{x}{2}=\frac{y}{3}\)và xy = 54
\(a,\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\frac{x}{10}=2\Rightarrow x=10.2=20\)
\(\frac{y}{6}=2\Rightarrow y=2.6=12\)
\(\frac{z}{21}=2\Rightarrow z=21.2=42\)
\(d,\frac{x}{2}=\frac{y}{3}=k\)\(\Rightarrow x=2k;y=3k\)
\(\Rightarrow ab=2k.3k=6k^2=54\)
\(\Rightarrow k^2=9\Leftrightarrow k=3\)
\(\frac{x}{2}=3\Rightarrow x=6\)
\(\frac{y}{3}=3\Rightarrow y=9\)
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x = 20; y = 12; z = 42
b) Ta có: \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{125}{62}=\frac{125}{62}\)
=> \(\hept{\begin{cases}\frac{x}{15}=\frac{125}{62}\\\frac{y}{20}=\frac{125}{62}\\\frac{z}{28}=\frac{125}{62}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{125}{62}.15=\frac{1875}{62}\\y=\frac{125}{62}.20=\frac{1250}{31}\\z=\frac{125}{62}.28=\frac{1750}{31}\end{cases}}\)
Vậy ...
b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{2x}{30}=\frac{3y}{60};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3y}{60}=\frac{z}{28}\)
\(\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng dãy tỉ số bằng nhau:
đến đây dễ rồi bạn tự lm tiếp nhé
c) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng dãy tỉ số bằng nhau:
.............
d) Ta có:
\(xy=54\Rightarrow x=\frac{54}{y}\)
\(\frac{x}{2}=\frac{\frac{54}{y}}{2}=54.\frac{2}{y}=\frac{108}{y}\)
Ta lại có:\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{108}{y}=\frac{y}{3}\Rightarrow y^2=324\Leftrightarrow y=18\)
thay vào \(\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2}=\frac{18}{3}\Leftrightarrow x=12\)
Vậy.....
Timf các số tự nhiên x và y biết: 4/x = y/21 = 28/49
KHONG HIEU
Tìm các số tự nhiên x, y biết :
a) 2x = 4y - 1 và 27y = 3x + 8
b) \(\frac{x-28-124}{2011}+\frac{x-124-2011}{28}+\frac{x-2011-28}{124}\)
Tìm x , y , z , biết :
a, \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) VÀ 5x + y - 2z = 28
b, \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\) VÀ 2x + 3y - z = 124
c, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)VÀ x + y + z = 49
d, 3x = 2y , 7y = 5z VÀ x - y + z = 32
CÁC BẠN GIÚP MÌNH VỚI NHÉ
a) \(\frac{x}{10}\)= \(\frac{y}{6}\)= \(\frac{z}{21}\) và 5x + y - 2z =28
\(\Rightarrow\)\(\frac{5x}{50}\)= \(\frac{y}{6}\)= \(\frac{2z}{42}\) và 5x + y - 2z=28
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}\)= \(\frac{y}{6}\)= \(\frac{2z}{42}\)= \(\frac{5x+y-2z}{50+6-42}\)= \(\frac{28}{14}\)=2
Suy ra: \(\frac{x}{10}\)= \(2\)\(\Rightarrow\)x=20
\(\frac{y}{6}\)= 2\(\Rightarrow\)y=12
\(\frac{z}{21}\)= 2\(\Rightarrow\)z=42
Vậy...
Hai câu b,c làm tương tự nhé
d) \(\frac{3}{x}\)= \(\frac{2}{y}\); \(\frac{7}{y}\)= \(\frac{5}{z}\) và x-y+z=32
\(\frac{y}{3}\)= \(\frac{x}{2}\); \(\frac{z}{7}\)= \(\frac{y}{5}\) và x-y+z=32
\(\frac{y}{15}\)= \(\frac{x}{10}\); \(\frac{z}{21}\)= \(\frac{y}{15}\) và x-y+z=32
\(\frac{y}{15}\)= \(\frac{x}{10}\)= \(\frac{z}{21}\) và x-y+z=32
........
\(\hept{\begin{cases}\\\end{cases}swss}\)
c, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)=> \(\frac{2x}{3}.\frac{1}{12}=\frac{3y}{4}.\frac{1}{12}=\frac{4z}{5}.\frac{1}{12}\)
=> \(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)
Theo tính chất dãy tỉ số bằng nhau và \(\frac{x+y+z}{18+16+15}=\frac{49}{49}=1\)
=> x = 18
y = 16
z = 15
tìm các số tự nhiên x và y biết
4/x=y/21=28/49
4 /x=y/21=28/49
vì 21.4/12=7 nên x=7
28.21/49 =12 nên y=12 (công thức nhân chéo)
vậy ,x=7 ;y=12