Chứng minh rằng:A =10n +18n-1 chia hết cho 81(n là số tự nhiên chia hết cho 3)
Chứng minh rằng:
a) ( n^5 - n) chia hết cho 30
b) ( n^4 - 10n^2 + 9) chia hết cho 384(n lẻ thuộc Z)
c) ( 10^n + 18n - 28) chia hết cho 27 ( n thuộc N)
Chứng minh rằng:
a) ( n^5 - n) chia hết cho 30
b) ( n^4 - 10n^2 + 9) chia hết cho 384(n lẻ thuộc Z)
c) ( 10^n + 18n - 28) chia hết cho 27 ( n thuộc N)
Chứng minh 10n+ 18n-1 chia hết cho 81 (n là số tự nhiên)
Chứng minh rằng: B = 10n + 72n – 1 chia hết cho 81 với n là số tự nhiên
Ta Có:
Cho biểu thức trên là B
\(b\)\(=\)\(10\)\(^n\)+ \(72n\)\(-1\)
\(=10\)\(^n\)\(+72n\)\(-1\)
\(=10^{n^{ }}\)\(-1\)(có n\(-1chữ\) số 9)=9\(x\)(11....1)(có n chữ số 1)
B= 10n-1+72n=9x(11....1)+72n
=>B:9=11....1+8n=11....1-n+9n
Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n
=>11....1-n chia hết cho 9
=>B:9=11....1-n+9n chia hết cho 9
Vậy B chia hết cho 81
Ta Có:
Cho biểu thức trên là B
bb==1010nn+ 72n72n−1−1
=10=10nn+72n+72n−1−1
=10n=10n−1−1(có n−1chữ−1chữ số 9)=9xx(11....1)(có n chữ số 1)
B= 10n-1+72n=9x(11....1)+72n
=>B:9=11....1+8n=11....1-n+9n
Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n
=>11....1-n chia hết cho 9
=>B:9=11....1-n+9n chia hết cho 9
Vậy B chia hết cho 81
a) Cho S = 5 + 52+ 53 + 54 + 55 + 56 +…+ 52012. Chứng tỏ S chia hết cho 65.
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1và chia cho 19 dư 11.
c) Chứng tỏ: A = 10n+ 18n - 1 chia hết cho 27 (với n là số tự nhiên)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
a) Cho S = 5 + 52 + 53 + 54 + 55 + 56 +…+ 52012. Chứng tỏ S chia hết cho 65.
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1 và chia cho 19 dư 11.
c) Chứng tỏ: A = 10n + 18n - 1 chia hết cho 27 (với n là số tự nhiên)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó nên
* Vậy A chia hết cho 27
cho n là số tự nhiên chia hết cho 3
chứng minh rằng:A=n^3+n^2+3 không chia hết cho 9
A = n3 + n2 + 3
n ⋮ 3⇒ n2 ⋮ 3
⇒ n2 ⋮ 32 (Tính chất của một số chính phương)
⇒ n2 ⋮ 9
⇒ n2.n ⋮ 9
⇒n2.n + n2 ⋮ 9; mà 3 không chia hết cho 9
⇒ n2.n + n2 + 3 không chia hết cho 9
Giúp với mọi người ơi! Khẩn cấp, khẩn cấp!!!
Chứng minh rằng A=10^n+18n-1 chia hết cho 81 (n là số tự nhiên)
Cái này mình làm không chắc chắn đâu nha !
10^n lúc nào chia 9 cũng dư 1(100 : 9 dư 1; 1000 chia 9 dư 1.....)
18 chia hết cho 9 => 18n chia hết cho 9
Vậy A= 10^n+18n-1 chia hết cho 9
Mà số chia hết cho 9 là chia hết cho 81 nên A chia hết cho 81
chúng minh A là số chính phương mà chia hết cho 9 ý
Chứng minh rằng số A = 10^n + 18n - 1 chia hết cho 27 ( n là số tự nhiên )
ta sẽ chứng minh bằng quy nạp
Xét n=1 ta có : \(10^n+18n-1=27\text{ chia hết cho 27}\)
Giả sử điều kiện đúng tới n hay \(10^n+18n-1\text{ chia hết cho 27}\)
Xét tại n+1 ta có \(10^{n+1}+18\left(n+1\right)-1=10\times10^n+18n+17=10\times\left(10^n+18n-1\right)-162n+27\)
Dễ thấy \(10^n+18n-1\text{ chia hết cho 27}\) và \(-162n+27=27\times\left(-6n+1\right)\text{ chia hết cho 27}\)
Do đó điều kiện đúng với n+1
Theo nguyên lý quy nạp thì A chia hết cho 27 với mọi số tự nhiên n