Những câu hỏi liên quan
KK
Xem chi tiết
PH
3 tháng 4 2015 lúc 16:23

A=3/2+13/12+31/30+...+9901/9900
= 1+1/2+1+1/12+1+1/30+...+1+1/9900
=1+1+1+...+1+1(50 cs)+1/2+1/12+1/30+...+1/9900
=50+1/2+1/12+1/30+...+1/9900
B=5/6+19/20+41/42+...+10099/10100
=(1-1/6)+(1-1/20)+(1-1/42)+...+(1-1/10100)
=1+1+...+1(50cs)-1/6-1/20-1/42-...-1/10100
A-B=(50+1/2+1/12+1/30+...+1/9900)-(50-1/6-1/20-1/42-...-1/10100)
=1/2+1/6+1/12+1/20+...+1/9900+1/10100
=1/1.2+1/2.3+1/3.4+1/4.5+...+1/99.100+1/100.101
=1-1/2+1/2-1/3+1/3-1/4+1/4-...+1/99-1/100+1/100-1/101
=1-1/101
=100/101

Bình luận (0)
LT
19 tháng 4 2018 lúc 20:06

cách bạn làm hay đấy

Bình luận (0)
TT
Xem chi tiết
LQ
Xem chi tiết
AV
Xem chi tiết
LN
Xem chi tiết
TL
14 tháng 7 2015 lúc 18:23

A - B = \(\left(1+\frac{1}{2}+1+\frac{1}{12}+1+\frac{1}{30}+1+\frac{1}{56}+1+\frac{1}{90}\right)-\left(1-\frac{1}{6}+1-\frac{1}{20}+1-\frac{1}{42}+1-\frac{1}{72}+1-\frac{1}{110}\right)\)\(\left(5+\frac{1}{2}+\frac{1}{12}+\frac{1}{30}+\frac{1}{56}+\frac{1}{90}\right)-\left(5-\frac{1}{6}-\frac{1}{20}-\frac{1}{42}-\frac{1}{72}-\frac{1}{110}\right)\)\

\(5+\frac{1}{2}+\frac{1}{12}+\frac{1}{30}+\frac{1}{56}+\frac{1}{90}-5+\frac{1}{6}+\frac{1}{20}+\frac{1}{42}+\frac{1}{72}+\frac{1}{110}\)

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+\frac{1}{9.10}+\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{8.9}+\frac{1}{10.11}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}=1-\frac{1}{11}=\frac{10}{11}\)

 

Bình luận (0)
VP
Xem chi tiết
LD
8 tháng 5 2017 lúc 20:54

1.

A=\(\dfrac{3\left|x\right|+2}{\left|x\right|-5}=\dfrac{3\left|x\right|-15+17}{\left|x\right|-5}=\dfrac{3\left(\left|x\right|-5\right)+17}{\left|x\right|-5}=\dfrac{3\left(\left|x\right|-5\right)}{\left|x\right|-5}+\dfrac{17}{\left|x-5\right|}=3+\dfrac{17}{\left|x\right|-5}\)

Để A \(\in\)Z thì \(\left|x\right|-5\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)

Ta có :

\(\left|x\right|-5=-17\Rightarrow\left|x\right|=-12\left(KTM\right)\)

\(\left|x\right|-5=-1\Rightarrow\left|x\right|=4\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

\(\left|x\right|-5=1\Rightarrow\left|x\right|=6\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)

\(\left|x\right|-5=17\Rightarrow\left|x\right|=32\Rightarrow\left[{}\begin{matrix}x=32\\x=-32\end{matrix}\right.\)

Vậy để A \(\in\)Z thì x \(\in\) {-32;-6;-4;4;6;32}

Bình luận (1)
VK
Xem chi tiết
ST
24 tháng 5 2017 lúc 13:02

Ta có:

\(A=\frac{3}{2}+\frac{13}{12}+\frac{31}{30}+\frac{57}{56}+\frac{91}{90}\)

\(=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{12}\right)+\left(1+\frac{1}{30}\right)+\left(1+\frac{1}{56}\right)+\left(1+\frac{1}{90}\right)\)

\(=\left(1+1+1+1+1\right)+\left(\frac{1}{2}+\frac{1}{12}+\frac{1}{30}+\frac{1}{56}+\frac{1}{90}\right)\)

\(=5+\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+\frac{1}{9.10}\right)\)

\(B=\frac{5}{6}+\frac{19}{20}+\frac{41}{42}+\frac{71}{72}+\frac{109}{110}\)

\(=\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{72}\right)+\left(1-\frac{1}{110}\right)\)

\(=\left(1+1+1+1+1\right)-\left(\frac{1}{6}+\frac{1}{20}+\frac{1}{42}+\frac{1}{72}+\frac{1}{110}\right)\)

\(=5-\left(\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{8.9}+\frac{1}{10.11}\right)\)

=> A - B =\(\left[5+\left(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+\frac{1}{9.10}\right)\right]-\left[5-\left(\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{8.9}+\frac{1}{10.11}\right)\right]\)

\(5+\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+\frac{1}{9.10}-5+\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{8.9}+\frac{1}{10.11}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(1-\frac{1}{11}\)

\(\frac{10}{11}\)

Bình luận (0)
ND
24 tháng 5 2017 lúc 10:04

\(A=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{12}\right)+\left(1+\frac{1}{30}\right)+\left(1+\frac{1}{56}\right)+\left(1+\frac{1}{90}\right)\)

\(B=\left(1-\frac{1}{6}\right)+\left(1-\frac{19}{20}\right)+\left(1-\frac{1}{42}\right)+\left(1-\frac{1}{72}\right)+\left(1-\frac{1}{110}\right)\)

Mk gợi ý đến đây thôi , mk bí rồi đợi mk nghĩ đã!

Bình luận (0)
ND
24 tháng 5 2017 lúc 10:11

mk sửa lại 1-1/20 chứ ko phải 1-19/20

\(A=\left(5+\frac{1}{2}+\frac{1}{12}+\frac{1}{30}+\frac{1}{56}+\frac{1}{90}\right)\)

\(B=\left(5-\frac{1}{6}-\frac{1}{20}-\frac{1}{42}-\frac{1}{72}-\frac{1}{110}\right)\)

\(A-B=\left(5+\frac{1}{2}+\frac{1}{12}+\frac{1}{30}+\frac{1}{56}+\frac{1}{90}\right)-\left(5-\frac{1}{6}+\frac{1}{20}+\frac{1}{42}+\frac{1}{72}+\frac{1}{110}\right)\)

\(A-B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\)

\(A-B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)

\(A-B=1-\frac{1}{11}\)

\(A-B=\frac{10}{11}\)

Bình luận (0)
DL
Xem chi tiết
PS
18 tháng 7 2017 lúc 16:26

a, 13/19

b, 5

c, 31/48

d, 6/7

Bình luận (0)
DL
18 tháng 7 2017 lúc 17:02

mình cần cách giải

Bình luận (0)
CY
Xem chi tiết