Những câu hỏi liên quan
HN
Xem chi tiết
PB
Xem chi tiết
CT
13 tháng 2 2018 lúc 5:30

Bình luận (0)
TH
Xem chi tiết
DA
Xem chi tiết
PB
Xem chi tiết
CT
16 tháng 2 2018 lúc 13:35

Bình luận (0)
VA
Xem chi tiết
S1
16 tháng 2 2023 lúc 13:08

a. Tính góc ADB và góc BDC: Gọi góc ADB = x, góc BDC = y. Ta có thể sử dụng các quy tắc góc chắn cung và góc nội tiếp để tính góc như sau:

Góc BAC = 90 độ (do tam giác ABC vuông tại A) Góc B = 60 độ (theo đề bài) Góc ABC = 180 - Góc BAC - Góc B = 30 độ (tổng các góc của tam giác ABC bằng 180 độ) Góc ABD = Góc ABC (do AB // CD theo định lý Thales) Góc DAB = 180 - Góc ADB - Góc ABD = 180 - x - 30 Góc BCD = Góc BAC (do CD là tiếp tuyến của đường tròn ngoại tiếp tam giác BDC) Góc BDC = 180 - Góc BCD - Góc B = 90 - Góc BAC/2 = 45 độ (do tam giác BCD cân tại B)

b. So sánh các cạnh của tam giác ABD: Để so sánh các cạnh của tam giác ABD, ta cần tính độ dài các cạnh. Theo định lý Pythagoras trong tam giác vuông ABC, ta có:

AB^2 = AC^2 + BC^2 = a^2 + b^2 BC = a AC = b Vậy AB = sqrt(a^2 + b^2). Tương tự, ta có CD = b và BD = c*sqrt(3)/2 (tính theo phương pháp trong câu trả lời trước). Do đó, ta có thể so sánh các cạnh của tam giác ABD theo thứ tự tăng dần: CD < AB < BD.

c. So sánh các góc của tam giác BDC: Trong tam giác BDC, ta đã tính được góc BDC = 45 độ (như ở câu a). Do tam giác BDC cân tại B, nên góc CBD cũng bằng 45 độ. Vì vậy, hai góc của tam giác BDC bằng nhau và bằng 45 độ.

Bình luận (0)
S1
17 tháng 2 2023 lúc 8:46

a. Tính góc ADB và góc BDC: Gọi góc ADB = x, góc BDC = y. Ta có thể sử dụng các quy tắc góc chắn cung và góc nội tiếp để tính góc như sau:

Góc BAC = 90 độ (do tam giác ABC vuông tại A) Góc B = 60 độ (theo đề bài) Góc ABC = 180 - Góc BAC - Góc B = 30 độ (tổng các góc của tam giác ABC bằng 180 độ) Góc ABD = Góc ABC (do AB // CD theo định lý Thales) Góc DAB = 180 - Góc ADB - Góc ABD = 180 - x - 30 Góc BCD = Góc BAC (do CD là tiếp tuyến của đường tròn ngoại tiếp tam giác BDC) Góc BDC = 180 - Góc BCD - Góc B = 90 - Góc BAC/2 = 45 độ (do tam giác BCD cân tại B)

b. So sánh các cạnh của tam giác ABD: Để so sánh các cạnh của tam giác ABD, ta cần tính độ dài các cạnh. Theo định lý Pythagoras trong tam giác vuông ABC, ta có:

AB^2 = AC^2 + BC^2 = a^2 + b^2 BC = a AC = b Vậy AB = sqrt(a^2 + b^2). Tương tự, ta có CD = b và BD = c*sqrt(3)/2 (tính theo phương pháp trong câu trả lời trước). Do đó, ta có thể so sánh các cạnh của tam giác ABD theo thứ tự tăng dần: CD < AB < BD.

c. So sánh các góc của tam giác BDC: Trong tam giác BDC, ta đã tính được góc BDC = 45 độ (như ở câu a). Do tam giác BDC cân tại B, nên góc CBD cũng bằng 45 độ. Vì vậy, hai góc của tam giác BDC bằng nhau và bằng 45 độ.

Bình luận (0)
TB
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết