Chứng minh: 1/5^2 + 2/5^3 + 3/5^4 + ... + 11/5^12 < 1/16
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh: 1/5^2 + 2/5^3 + 3/5^4 + ... + 11/5^12 < 1/16
Cho P=1/52+2/5^3+3/5^4+4/5^5+...+11/5^12. Chứng minh rằng P<1/16
1.Chứng minh rằng: √2 + √6 +√12 + √20 < 12
2. Cho A=1/5+2/(5^2)+3/(5^3)+......+10/(5^10)+11/(5^11). Chứng minh rằng A < 5/16
cho n là số tự nhiên. chứng minh A=1/5^2+2/5^3+3/5^4+4/5^5+5/5^6+....+n/5^n+1+......+11/5^12<1/16
Cho A= 1/5^2 + 2/5^3 + 3/5^4 + ....... + n/5^n+1 + ....... + 11/5^12 với n thuộc N.
Chứng minh rằng A < 1/16
5A = 1/5 + 2/5^2 +3/5^3 +...+ 11/5^11
=> 4A= 1/5+1/5^2 +1/5^3 +...+1/5^11 - 11/5^12
=> 20A = 1+1/5+1/5^2+...+1/5^10 - 11/5^11
=> 16A = 1-1/5^11+11/5^12-11/5^11
Vì 1-1/5^11 < 1 ; 11/5^12 -11/5^11 < 0
=> 16A < 1
=> A < 1/16
chứng minh H=1/5^2+2/5^3+..........+11/5^12 <1/16
Chứng minh: \(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{11}{5^{12}}<\frac{1}{16}\)
\(\left(\frac{1}{5^2}+\frac{2}{5^3}+.....+\frac{11}{5^{12}}\right)\)
=\(\left(\frac{1}{5^2}+\frac{2}{5^3}+.....+\frac{11}{5^{12}}\right)\)<\(\frac{1}{4.5}+\frac{2}{4.5.6}+...+\frac{11}{4.5.6...15}\)
=???
Chứng minh:
\(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{11}{5^{12}}<\frac{1}{16}\)
Cho A = 1/52+2/53+3/54+…+n/5n+1+…+11/512 Chứng minh rằng A < 1/16