CMR với mọi số nguyên thì: 4n^3+9n^2-19n-30 chia hết cho 6
cmr với mọi số nguyên n thì 4n3+9n2-19n-30 chia hết cho 6
Chứng minh rằng: 4n^3+9n^2-19n-30 chia hết cho 6 ( với n thuộc Z)
Chứng minh rằng A= 4n^3+9n^2-19n-30 chia hết cho 6
CMR với mọi số nguyên n thì (n3-19n) chia hết cho 6
n3-19n=n3-n-18n=(n2-1)n-18n=(n-1)n(n+1)-18n
trong 3 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 3
=>(n-1)n(n+1) chia hết cho 3
trong 3 số tự nhiên liên tiếp sẽ có ít nhất 1 số chia hết cho 2
=>(n-1)n(n+1) chia hết cho 2
vì (2;3)=1=>(n-1)n(n+1) chia hết cho 6
=>(n-1)n(n+1)=6k
=>(n-1)n(n+1)-18n=6k-18n=6(k-3n) chia hết cho 6
=>n3-19n chia hết cho 6
=>đpcm
A = n³-19n = n³-n - 18n = n(n²-1) - 18n = n(n-1)(n+1) - 18n
n(n-1)(n+1) là 3 số nguyên liên tiếp nên chia hết cho 3, ngoài ra ít nhất 1 số chẳn nên chia hết cho 2 => n(n-1)(n+1) chia hết cho 6, 18n chia hết cho 6
=> A chia hết cho 6
CMR: 4n3+9n2-139-30 chia hết cho 6
cmr: với mọi số tự nhiên N thì tích (n+3)(9n+6) chia hết cho 2
ai tic gium minh lai bi tru diem hoi dap nua roi
CMR với mọi số nguyên n thì
(4n+3)^2-25 chia hết cho 8
tìm số nguyên n để 2n^3+9n^2-19n+263 chia hết cho 2n-1