tìm các SNT a sao cho 6a+13 là SNT và 25<= 6a+13<= 45
Tìm SNT x,y sao cho 5x+y và xy +13 cũng là các SNT
Vì x,y là số nguyên tố nên có 3 th:x,y lẻ.x,y chẵn, 1 chẵn , 1ler
Xét các trường hợp :
+Nếu cả hai đều lẻ thì 5x+y và xy+13 là số chẵn , mà 2 số là snt nên 2 cái đều bằng 2.(vô lí)
+Nếu cả 2 chẵn mà x y là snt nên x=y=2.Xét xem đùng ko.....
+Nếu 1 lẻ 1 chẵn thì nếu x chẵn thì x=2(x là snt) thay vào 5x+y và xy + 13 và làm như bài 5a đề 11
Xét tiếp nếu y chẵn , x lẻ tương tự
C1: tìm x,y,z thuộc N sao cho x^3+y^3=2Z^3 và x+y+z là SNT
C2: Tìm a thuộc N sao cho a+1,4a^+8a+5, 6a^2+12a+7 là SNT
Gọi a và b là 2 snt liên tiếp nếu giữa a và b ko có snt nào khác . Hãy tìm tất cả các bộ ba snt liên tiếp a,b,c sao cho a2+b2+c2 cũng là snt
tìm SNT p sao cho các số p+3 và p+5 cũng là SNT
Nếu p = 2
=> p + 3 = 5 (tm)
p + 5 = 7 (tm)
Nếu p > 2 => p = 2k + 1
Khi đó p + 3 = 2k + 1 + 3 = 2k + 4 = 2(k + 2) \(⋮\)2 => loại
Vậy p = 2 là giá trị cần tìm
bài 1: tìm SNT p sao cho :
a) p, p+2, p+4 là các SNT
b) p+10, p=14 là các SNT
c) p+2, p+6, p+14 là các SNT
bài 2: tìm 2 STN mà tổng và tích của nó là các SNT
bài 3:tìm n thuộc N sao cho p=(n-20)x(n2+n-1) là một SNT
Lưu ý : STN =số tự nhiên
SNT=số nguyên tố
cẩn thận nha
tìm SNT p sao cho 2 số p+4 và p+8 đều là SNT(các bạn nhớ viết lời giải)
Xét:
p=2=>p+4=2+4=6-> hợp số
p+8=2+8=10-> hợp số
=>loại
p=3=>p+4=3+4=7-> hợp số
p+8=3+8=11-> hợp số
=> chọn
p>3
=> p=3k+1(k thuộc z)-> p+8=3k+(1+8)=3k+9=3m(m thuộc z)=> hợp số => loại
=>p=3k+2(k thuộc z)->p+4=3k+(2+4)=3k+6=3n(n thuộc z)=> hợp số=> loại
Vậy p=3
tìm SNT p sao cho p+2 và p+10 là SNT
Nếu p = 2 ⇒ p+ 2 = 4 ( loại)
Nếu p = 3 ⇒ p + 2 = 2 + 3 = 5 ( thỏa mãn)
p + 10 = 3 + 10 = 13 ( thỏa mãn)
Nếu p > 3 ⇒ p = 3k + 1 hoặc p = 3k + 2
Nếu p = 3k+ 1 ⇒ p +2 = 3k + 1 + 2 = 3k + 3 ⋮ 3 (loại)
Nếu p = 3k + 2 ⇒ p + 10 = 3k + 2 + 10 = 3k + 12 ⋮ 3 (loại)
Vậy p = 3 là số nguyên tố duy nhất thỏa mãn yêu cầu đề bài
tìm SNT P sao cho p2 +4 và p2 -4 là SNT
Tìm snt a,b sao cho a^b+1 là snt