Những câu hỏi liên quan
LA
Xem chi tiết
DA
Xem chi tiết

1.Áp dụng định lý Fermat nhỏ.

Bình luận (0)
NC
27 tháng 8 2019 lúc 14:41

1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)

Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)

và \(5\left(a-1\right)a\left(a+1\right)⋮5\)

=> \(a^5-a⋮5\)

Nếu \(a^5⋮5\)=> a chia hết cho 5

Bình luận (0)
ZZ
27 tháng 8 2019 lúc 14:53

Cách 2

\(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

Do a nguyên nên a có 5 dạng:\(5k;5k+1;5k+2;5k+3;5k+4\)

Nếu \(a=5k\Rightarrow a^5-a=5k\left(a-1\right)\left(a+1\right)\left(a^2+1\right)⋮5\)

Nếu \(a=5k+1\Rightarrow a^5-a=a\cdot5k\left(a+1\right)\left(a^2+1\right)⋮5\)

Nếu \(a=5k+2\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+20k+5\right)⋮5\)

Nếu \(a=5k+3\Rightarrow a^5-a=a\left(a-1\right)\left(a+1\right)\left(25k^2+30k+10\right)⋮5\)

Nếu \(a=5k+4\Rightarrow a^5-a=a\left(a-1\right)\left(5k+5\right)\left(a^2+1\right)⋮5\)

Vậy \(a^5-a⋮5\)

Bình luận (0)
C9
Xem chi tiết
HN
6 tháng 7 2016 lúc 23:54

Giả sử \(n+1=a^2\) ; \(2n+1=b^2\) \(\left(a,b\in N^{\text{*}}\right)\)

Ta có b là số lẻ \(\Leftrightarrow b=2m+1\Rightarrow b^2=4m\left(m+1\right)+1\Rightarrow n=2m\left(m+1\right)\)

=> n chẵn => n + 1 lẻ => a lẻ => a = 2k+1 =>  \(n+1=\left(2k+1\right)^2=4k\left(k+1\right)+1\Rightarrow n=4k\left(k+1\right)⋮8\)

Vậy n chia hết cho 8

Ta có : \(a^2+b^2=3n+2\equiv2\)(mod 3)

Mặt khác : \(b^2\)chia 3 dư 0 hoặc 1 , \(a^2\)chia 3 dư 0 hoặc 1

=> Để \(a^2+b^2\equiv2\)(mod 3) thì \(a^2\equiv1\)(mod 3) và \(b^2\equiv1\)(mod 3)

\(\Rightarrow b^2-a^2\)chia hết cho 3

Ta có : n = (2n + 1) - (n + 1) = \(b^2-a^2\)chia hết cho 3

Như vậy  \(n⋮3,n⋮8\) mà (3,8) = 1 

=> \(n⋮24\)

Bình luận (0)
ND
7 tháng 7 2016 lúc 10:17

bằng 1 nhé100% là đúng

k cho mình nha 

Bình luận (0)
TZ
Xem chi tiết
DT
26 tháng 3 2019 lúc 12:33

Vì 2n+1 là số chính phương lẻ nên

2n+1≡1(mod8)⇒2n⋮8⇒n⋮4

Do đó n+1 cũng là số lẻ, suy ra

n+1≡1(mod8)⇒n⋮8

Lại có

(n+1)+(2n+1)=3n+2

Ta thấy

3n+2≡2(mod3)

Suy ra

(n+1)+(2n+1)≡2(mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ nên

n+1≡2n+1≡1(mod3)

Do đó: n⋮3

Vậy ta có đpcm.

Bình luận (0)
H24
26 tháng 3 2019 lúc 12:35

Chứng minh rằng nếu n là số tự nhiên sao cho n + 1 và 2n + 1 đều là các số chính phương thì n là bội của 24

Vì 2 n - 1 là số chính phương . Mà 2n - 1 lẻ

⇒2n+1=1(mod8)⇒2n+1=1(mod8)

=> n ⋮⋮ 4

=> n chẵn

=> n+1 cũng là số lẻ

⇒n+1=1(mod8)⇒n+1=1(mod8)

=> n ⋮⋮ 8

Mặt khác :

3n+2=2(mod3)3n+2=2(mod3)

⇒(n+1)+(2n+1)=2(mod3)⇒(n+1)+(2n+1)=2(mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ

⇒n+1=2n+1=1(mod3)⇒n+1=2n+1=1(mod3)

=> n chia hết cho 3

Mà ( 3 ; 8 ) = 1

=> n chia hết cho 24

 Bạn tham khảo: !!!

Bình luận (0)
TG
26 tháng 3 2019 lúc 12:43

Vì 2n-1 là số chính phương. Mà 2n-1 lẻ

\(\Rightarrow2n+1=1\left(mod8\right)\)

\(\Rightarrow n⋮4\)

\(\Rightarrow\)n chẵn

\(\Rightarrow n+1\)lẻ

\(\Rightarrow n+1=1\left(mod8\right)\)

\(\Rightarrow n⋮8\)

  Mặt khác

\(3n+2=2\left(mod3\right)\)

\(\Rightarrow\left(n+1\right)+\left(2n+1\right)=2\left(mod3\right)\)

Mà n+1 và 2n+1 đều là các số chính phương lẻ

\(\Rightarrow n\text{+}1=2n\text{+}1=1\left(mod3\right)\)

\(\Rightarrow n⋮3\)

    Mà (3:8)=1

\(\Rightarrow n⋮24\)

Bình luận (0)
NH
Xem chi tiết
CH
21 tháng 11 2017 lúc 15:10

Do UCLN(n,6) = 1 nên n không chia hết cho 2 và 3.

n không chia hết cho 2 nên n phải là số lẻ, n không chia hết cho 3 nên n chỉ có thể có dạng 3k + 1 hoặc 3k + 2

Nếu n = 3k + 1 thì k phải là số chẵn. Đặt k = 2j, ta có n = 3.2j + 1 = 6j + 1

Khi đó \(n^2-1=\left(6j+1\right)^2-1=36j^2+12j=12j\left(3j+1\right)\)

Nếu j chẵn, \(j=2t\Rightarrow n^2-1=12.2t\left(6t+1\right)=24t\left(6t+1\right)⋮24\)

Nếu j lẻ, \(j=2t+1\Rightarrow n^2-1=12.\left(2t+1\right)\left(6t+4\right)=24\left(2t+1\right)\left(3t+2\right)⋮24\)

Vậy \(n^2-1⋮24\)

Nếu \(n=3k+2\) thì k là số lẻ. Đặt \(k=2j+1\Rightarrow n=3\left(2j+1\right)+2=6j+5\)

\(n^2-1=\left(6j+5\right)^2-1=36j^2+60j+24=12j\left(3j+5\right)+24\)

Nếu j chẵn, \(j=2t\Rightarrow n^2-1=12.2t\left(6t+5\right)=24t\left(6t+5\right)⋮24\)

Nếu j lẻ, \(j=2t+1\Rightarrow n^2-1=12.\left(2t+1\right)\left(6t+8\right)=24\left(2t+1\right)\left(3t+4\right)⋮24\)

Vậy \(n^2-1⋮24\)

Tóm lại , khi UCLN(n ; 6) = 1 thì \(n^2-1⋮6\)

Bình luận (0)
NC
Xem chi tiết
TK
18 tháng 5 2016 lúc 19:24

P là số nguyên tố lớn hơn 3 => P không chia hết cho 2 cho 3 

Ta có :P không chia hết cho 2

=> P-1 và P+1 là 2 số chẵn liên tiếp => (P-1)(P+1) chia hết cho 8 (1)

Mặt khác:P không chia hết cho 3

Nếu P= 3k +1 thì P-1 =3k chia hết cho 3 => (P-1(P+1) chia hết cho 3

Tương tự: Nếu P= 3k+2 thì P+1=3k +3 chia hết cho 3 => (P-1(P+1) chia hết cho 3(2)

Từ (1)(2)=>(P-1)(P+1) chia hết cho 8 cho 3 mà (8;3)=1 =>(P-1)(P+1) chia hết cho 24

Bình luận (0)
LH
Xem chi tiết
VT
Xem chi tiết
LD
Xem chi tiết