cho A= 1+2^1+2^2+...+2^100+2^101
\(A=1+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\)
\(\frac{A}{2}=\frac{1}{2}+\frac{3}{2^4}+\frac{4}{2^5}+....+\frac{100}{2^{101}}\)\(A-\frac{A}{2}=\left(1+\frac{3}{2^3}+....+\frac{100}{2^{100}}\right)-\left(\frac{1}{2}+\frac{3}{2^4}+.....+\frac{100}{2^{101}}\right)\)
\(\frac{A}{2}=\frac{1}{2}+\frac{3}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+....+\frac{1}{2^{100}}-\frac{100}{2^{101}}\)
\(\frac{A}{2}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+....+\frac{1}{2^{100}}-\frac{1}{2^{101}}\)
\(\frac{A}{2}=\left(1-\left(\frac{1}{2}\right)^{101}\right).2-\frac{100}{2^{101}}\)
\(\frac{A}{2}=\frac{2^{101}-1}{2^{100}}-\frac{100}{2^{101}}\)
\(A=\frac{2^{101}-1}{2^{99}}-\frac{100}{2^{100}}\)
1, cho a^100+b^100=a^101+b^101=a^101+b^101=a^102+b^102.CM a+b/b=a^2+b^2/a^2b^2
2,tính gtbt:A= x/xy+x+1+y/y+1+yz+z/1+z+xz
3, cho a,b,c,d>0 TM:a^2+b^2=1 và a^4/b+c^4/d=1/b+d CM:a^2016/b^1003+c^2006/d^1003=2/(b+d)^1003
A=1+2^1+2^2+...+2^100+2^101.Chứng tỏ rằng A chia hết cho 7
Ta có:
A=1+21+22+...+2100+2101A=1+21+22+...+2100+2101
= (1+2+22)+(23+24+25)+...+(299+2100+2101)(1+2+22)+(23+24+25)+...+(299+2100+2101)
= (1+2+22)+22.(1+2+22)+...+299.(1+2+22)(1+2+22)+22.(1+2+22)+...+299.(1+2+22)
= (1+2+22).(1+22+26+...+299)(1+2+22).(1+22+26+...+299)
= 7.(1+22+26+...+299)⋮77.(1+22+26+...+299)⋮7
(Vì 7⋮7)
\(A=1+2^1+2^2+...+2^{100}+2^{101}\)
\(\Rightarrow A=\left(1+2^1+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{99}+2^{100}+2^{101}\right)\)
\(\Rightarrow A=\left(1+2^1+2^2\right)+2^3\left(1+2^1+2^2\right)+...+2^{99}\left(1+2^1+2^2\right)\)
\(\Rightarrow A=\left(1+2^1+2^2\right)\left(1+2^3+...+2^{99}\right)\)
\(\Rightarrow A=7\left(1+2^3+...+2^{99}\right)⋮7\)
1. Tính :
A= 101+100+99+98+..+3+2+1 / 101-100+99-98+..+3-2+1
B= 3737.43-4343.37/ 2+4+6+...+100
ai giải được mk sẽ tick cho
a)Ta thấy: 101+100+99+98+...+3+2+1 có(101-1+1=101 số) tổng của tử số của A là: (101+1).101:2=5151.
Mẫu số cũng có số hạng bằng số hạng tử số,có số cặp ở mẫu là:101:2=50(dư 1 số)(số 1).
Vậy tổng mẫu số của A là : (101-100).50+1=51.Vậy A=5151:51=101
b) 3737.43-4343.37/2+4+6+...+100=101.37.43-101.43.37/2+4+6+...+100=101.(43.37-37.43)/2+4+6+...+100=0/2+4+6+...+100=0
a)Ta thấy: 101+100+99+98+...+3+2+1 có(101-1+1=101 số) tổng của tử số của A là:
(101+1).101:2=5151.
Mẫu số cũng có số hạng bằng số hạng tử số,có số cặp ở mẫu là:
101:2=50(dư 1 số)(số 1).
Vậy tổng mẫu số của A là :
(101-100).50+1=51.Vậy A=5151:51=101
b) 3737.43-4343.37/2+4+6+...+100=101.37.43-101.43.37/2+4+6+...+100=101.(43.37-37.43)/2+4+6+...+100=0/2+4+6+...+100=0
A = 1 . 2 + 2 . 3 + 3 . 4 + ......... + 98 . 99 / 1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + ........... + ( 1 + 2 + 3 + ...... + 98 )
B = ( 1 / 51 . 52 ) + 1 / 52 . 53 + ...... + 1 / 100 . 101 ) : ( 1 / 1 . 2 + 1 / 2 . 3 + ........ + 1 / 99 . 100 + 1 / 100 . 101
A=101+100+98+97+...+3+2+1/101-100+99-98+...+3-2+1
A = \(\dfrac{101+100+98+97+...+3+2+1}{101-100+99-98+...+3-2+1}\)
= \(\dfrac{\left(101+1\right).101:2}{1+1+1+...+1}\)
= \(\dfrac{5151}{101}\) = 51
cho A= 2+ 2^2 +2^3+...+2^100
a,CMR A= 2(2^100 -1 )
b, A nhỏ hơn 2 ^101
A=101+100+99+98+...+3+2+1/101-100+99-98+...+3-2+1
Lời giải:
Xét tử số:
$101+100+99+98+...+3+2+1=(101+1).101:2=5151$
Xét mẫu số:
$101-100+99-98+...+3-2+1$
$=(101-100)+(99-98)+...+(3-2)+1=\underbrace{1+1+....+1}_{50} +1=1.50+1=51$
Vậy $A=\frac{5151}{51}=101$
Tính
a) (x-1/2)+(x-1/4)+(x-1/8)+...+(x-1/512)
Tìm x
a) (x-1/1×2)+(x-1/2×3)+...+(x-1/100×101)
b) (x-1)+(x-2)+(x-3)+...+(x-101)=5050
c) x+1/2+1/3+1/4+...+1/100=3/2+4/3+5/4++...+101/100