cho pt: (m-1)\(x^2\)+2(m-1)x-m=0 Tìm m để pt có 2 nghiệm phân biệt đều âm
Bài 1: cho pt: x^2 -mx+m-2=0
a) tìm m để pt có hai nghiệm phân biệt x1,x1 sao cho x1^2+x2^2=7
b)tìm m để pt có hai nghiệm phân biệt x1,x1 sao cho x1^3+x2^3=18
bài 2: cho pt x^2 -2mx+m^2- 4=0
tìm m để pt đã cho có 2 nghiệm phân biệt:
a) x2=2x1 b) 3x1+2x2=7
cho pt: \(\left(m-1\right)x^2+2\left(m-1\right)x-m=0\). định m để pt có 2 nghiệm phân biệt đều âm
Để pt có hai nghiệm phân biệt âm cần :
m khác 1
\(\Delta'=\left(m-1\right)^2-\left(m-1\right)m>0\)
\(x1+x2=\frac{-2\left(m-1\right)}{m-1}<0\left(luônđúng\right)\)
\(x1\cdot x2=\frac{-m}{\left(m-1\right)}<0\)
đê pt có 2 nghiệm đều âm thì
s<0 và p>0
-2(m-1)/(m-2)<0<=>hai trường hợp
th1: m<1;m<2=>m<1 và -m/(m+1)>0<=>2 trường hợp
.m<0;m>-1<=>-1<m<0
.m>0;m<-1<=>m<-1 hoặc m>0
th2 tương tự
Cho PT:
\(\left(m-4\right)x^2-2mx+m-2=0\)
a) Tìm m để PT có nghiệm \(x=\sqrt{2}\)
b) Tìm m để PT có nghiệm kép. Tìm nghiệm kép đó
c) Tìm m để PT có 2 nghiệm phân biệt
a, Pt có nghiệm \(x=\sqrt{2}\) tức là
\(2\left(m-4\right)-2m\sqrt{2}+m-2=0\)
\(\Leftrightarrow2m-8-2m\sqrt{2}+m-2=0\)
\(\Leftrightarrow m\left(3-2\sqrt{2}\right)=10\)
\(\Leftrightarrow m=\frac{10}{3-2\sqrt{2}}\)
b, *Với m = 4 thì pt trở thành
\(\left(4-4\right)x^2-2.4.x+4-2=0\)
\(\Leftrightarrow-8x+2=0\)
\(\Leftrightarrow x=\frac{1}{4}\)
Pt này ko có nghiệm kép
*Với \(m\ne4\)thì pt đã cho là pt bậc 2
Có \(\Delta'=m^2-\left(m-4\right)\left(m-2\right)=m^2-m^2-6m+8=-6m+8\)
Pt có nghiệm kép \(\Leftrightarrow\Delta'=0\)
\(\Leftrightarrow m=\frac{4}{3}\)
Với \(m=\frac{4}{3}\) thì \(\Delta'=0\)
Pt có nghiệm kép \(x=\frac{-b'}{a}=\frac{m}{m-4}=\frac{\frac{4}{3}}{\frac{4}{3}-4}=-\frac{1}{2}\)
c, Pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\)
\(\Leftrightarrow-6m+8>0\)
\(\Leftrightarrow m< \frac{4}{3}\)
PT thì phải là $(m+1)x^2-2mx+2m=0$ nhé bạn chứ không có =0 thì không phải pt.
Lời giải:
TH1: $m=-1$ thì PT có nghiệm duy nhất $x=1$ $(*)$
----------------------------------------
TH2: $m\neq -1$ thì PT là PT bậc 2 ẩn $x$
$\Delta'=-m(m+2)$
PT có nghiệm khi $\Delta'=-m(m+2)\geq 0\Leftrightarrow -2\leq m\leq 0$
PT vô nghiệm khi $\Delta'=-m(m+2)<0\Leftrightarrow m< -2$ hoặc $m>0$
PT có 2 nghiệm pb khi $\Delta=-m(m+2)>0\Leftrightarrow -2< m< 0$
Như vậy, kết hợp 2 TH ta có:
PT ban đầu có nghiệm khi $-2\leq m\leq 0$
PT ban đầu vô nghiệm khi $m<-2$ hoặc $m>0$
PT ban đầu có 2 nghiệm phân biệt khi $-2< m< 0$ và $m\neq -1$
cho phương trình x^2-mx+m-2=0
a) tìm m để pt có hai nghiệm phân biệt x1,x1 sao cho x1^2+x2^2=7
b)tìm m để pt có hai nghiệm phân biệt x1,x1 sao cho x1^3+x2^3=18
Cho pt x4 - 5x2+ m=0. tìm m để pt có 2 nghiệm phân biệt
pt có 2 nghiệm pb <=> \(\Delta=25-4m>0\Leftrightarrow4m
Cho phương trình bậc 2 : x²+(m+1)x+m=0
a) Tìm m để pt có 2 nghiệm phân biệt x1,x2 thỏa mãn 2x1+3x2=1
b) Khi pt có 2 nghiệm phân biệt x1,x2 lập hệ thức liên hệ giữa nghiệm độc lập với m
cho pt: \(mx^2-\left(m^2+m+1\right)x+m+1=0\). tìm điều kiện của m để pt có 2 nghiệm phân biệt khác -1
cho pt: \(mx^2-\left(m^2+m+1\right)x+m+1=0\). tìm điều kiện của m để pt có 2 nghiệm phân biệt khác -1
Cái x khác -1;-2 bạn tự tìm
Để PT có 2 nghiệm phân biệt thì:
[-(m2+m+1)]2-4.m.(m+1)>0
<=>m4+m2+1+2m3+2m2+2m-4m2-4m>0
<=>m4+2m3-m2-2m+1>0
<=>m4+2m3-2m2+m2-2m+1>0
<=>m4+2m2.(m-1)+(m-1)2>0
<=>(m2+m-1)2>0
Mà (m2+m-1)2 > hoặc = 0 nên:
(m2+m-1)2 khác 0
=>m2+m-1 khác 0
còn lại bạn tự giải tiếp
dùng detal đi bạn>?! (m là hệ số)
detal >0
rùi tìm đkxđ để x1 vs x2 khác 1