Những câu hỏi liên quan
DH
Xem chi tiết
LL
23 tháng 2 2017 lúc 17:34

ta có: Q\(=\frac{1}{x^2-2x+3}=\frac{1}{x^2-2x+1+2}=\frac{1}{\left(x-1\right)^2+2\ge2}\)

\(\Rightarrow Q\ge\frac{1}{2}\)

Vậy \(Q_{max}\)=\(\frac{1}{2}\)tại x=1

Bình luận (3)
DN
Xem chi tiết
H24
Xem chi tiết
HD
25 tháng 12 2016 lúc 20:03

2014/(2x^2-4x+2+2012)

=2014/2(x-1)^2+2012 bé hơn hoặc bằng 2014/2012

suy ra GTLN của biểu thức là 2014/2012 tại x=1

Bình luận (0)
H24
25 tháng 12 2016 lúc 19:36

\(x=\frac{1007}{1006}\)

Bình luận (0)
AN
Xem chi tiết
DA
Xem chi tiết
H24
19 tháng 1 2022 lúc 17:42

Để E đạt GTLN thì \(\left|7x+5\right|\ge0\) với \(\forall x\in R\)nên

\(\left|7x+5\right|+4\ge0+4=4\)

\(\Rightarrow E=2+\frac{3}{\left|7x+5\right|+4}\le2+\frac{3}{4}=\frac{11}{4}\)

Dấu ''='' xảy ra khi \(\left|7x+5\right|=0\Leftrightarrow x=-\frac{5}{7}\)

Bình luận (0)
 Khách vãng lai đã xóa
TY
Xem chi tiết
TD
Xem chi tiết
NA
Xem chi tiết
LT
25 tháng 1 2017 lúc 20:12

\(=\frac{2.\left(x^2-x+1\right)+1}{\left(x^2-x+1\right)}\)

\(=2+\frac{1}{\left(x^2-x+1\right)}\)

\(\cdot x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Suy ra: GTLN của phân thức: \(\frac{1}{\left(x^2-x+1\right)}:\frac{4}{3}\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của Phân thức ban đầu là: \(\frac{10}{3}\)( khi x bằng 1 phần 2 ) ( : nghĩa là là)

Bình luận (0)
SK
25 tháng 1 2017 lúc 20:28

Gọi pt trên là A.

Ta có A = 2 + \(\frac{1}{x^2-x+1}\)

=> Pt đạt gt lớn nhất <=> \(\frac{1}{x^2-x+1}\)đạt gt lớn nhất <=> \(x^2-x+1\)đạt gt nhỏ nhất <=> x = 1.

Bình luận (0)
SK
25 tháng 1 2017 lúc 20:29

Mình nhầm, x = 1/2 nhé ^^

Bình luận (0)
MN
Xem chi tiết