Tính: S= 1.2+2.3+3.4+....+49.50
Tính
a) S= 1.2+2.3+3.4+...+32.33
b) S= 1.2+2.3+3.4+...+49.50
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 32.33
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 32.33.34
=> 3S = 32.33.34
=> S = \(\frac{32.33.34}{3}=11968\)
Tính S biết: S=1.2+2.3+3.4+4.5+................+49.50
A=1.2+2.3+...+49.50
3A=1.2.3+2.3.3+...+49.50.3
3A=1.2.(4-1)+2.3.(5-2)+....+49.50.(51-48)
3A=1.2.4-1.2.1+2.3.5-2.3.2+...+49.50.51-49.50.48
3A=49.50.51
=>A=49.25.51
=>A=62475
A=1.2+2.3+...+49.50
3A=1.2.3+2.3.3+...+49.50.3
3A=1.2.(4-1)+2.3.(5-2)+....+49.50.(51-48)
3A=1.2.4-1.2.1+2.3.5-2.3.2+...+49.50.51-49.50.48
3A=49.50.51
=>A=49.25.51
=>A=62475
3S=(1.2+2.3+3.4+...+49.50).3
3S=1.2.3+2.3.3+3.4.3+...+49.50.3
3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+49.50.(51-48)
3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+49.50.51-48.49.50
3S=49.50.51
S=17.49.50
cho A = 1/1.2+1/2.3+1/3.4+...+1/49.50 ; cho B = 1.2+1.3+3.4+....+49.50
tính 50mủ 2A - B/17
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}\)
\(B=1.2+2.3+3.4+...+49.50\)
\(3B=1.2.3+2.3.3+3.4.3+...+49.50.3\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+49.50.\left(51-48\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+49.50.51-48.49.50\)
\(=49.50.51\)
\(B=\frac{49.50.51}{3}=49.50.17\)
\(50^2.A-\frac{B}{17}=49.50-49.50=0\)
Giá trị của tổng S= 1.2+2.3+3.4+...49.50=?
Tính tổng (1.2)+(2.3)+(3.4)+...+(49.50)=?
Tính tổng 1.2 + 2.3 +3.4+.......... + 49.50
Đặt tổng trên =A
\(3A=1.2.3+2.3.3+3.4.3+...+48.49+49.50\)
\(3A=1.2.3+2.3\left(4-1\right)+3.4.\left(5-2\right)+...+48.49\left(50-47\right)+49.50\left(51-48\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+48.49.50-47.48.49+49.50.51-48.49.50\)
\(3A=49.50.51\Rightarrow A=\frac{49.50.51}{3}=17.50.51\)
đặt A=1.2+2.3+...+49.50
3A=1.2.3+2.3.3+...+49.50.3
3A=1.2.(3-0)+2.3.(4-1)+...+49.50.(51-48)
3A=1.2.3-0.1.2+2.3.4-1.2.3+...+49.50.51-48.49.50
3A=49.50.51
A=\(\frac{49.50.51}{3}\)
=>A=41650
Dãy số trên lập thành dãy số có khoảng cách là 1 đơn vị .
Số lượng số của dãy trên là :
( 49.50 - 1.2 ) : 1 x 1 = 49.3
Tổng của dãy số trên là :
( 49.50 + 1.2 ) x 49.3 :2 = 1249.755
Đ/S: 1249.755
Tính nhanh A = 1/1.2 + 1/2.3 + 1/3.4 + 1/3.4 + ... + 1/49.50
Ta thấy:\(\frac{1}{1.2}=1-\frac{1}{2},\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3},...,\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)
=>\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
=>\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
=>\(A=1-\frac{1}{50}\)
=>\(A=\frac{49}{50}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A=1-\frac{1}{50}\)
\(\Rightarrow A=\frac{49}{50}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=\frac{1}{1}-\frac{1}{50}\)
\(A=\frac{50}{50}-\frac{1}{50}\)
\(A=\frac{49}{50}\)
Tính S biết: S=1.2+2.3+3.4+4.5+................+49.50
3.s =1.2.3+2.3.3 +3.4.3+........+49.50
3s= 1.2 .3+ 2.3.(4-1) +.....+ 49.50( 51-48)
3s=49.50.51
3s=124950
s= 124950chia 3
s= 41650
\(Dear,Ph\text{ạm}Nguy\text{ễn}H\text{à}Vi \)z=312579 21yiauy9-6 m4n 8bv38 vfffffffffffffffffduvfeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesjk8bxhcngtrfhftoxd9 rn r r r r r xcvnoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiim89;pllllhj54rtxc rdt76nb5cvrt88888f9 r5fc7y p88;g bạn giỏi quá
Cho A=1/1.2 + 1/2.3 + + 1/ 3.4+...+1/49.50 ; B = 1.2+2.3+3.4+4.5+5.6+...+49.50
Tính 50 mủ 2 A – B/17