Tìm giá trị nguyên của x để biểu thức A= \(\frac{6x-4}{2x+1}\)có giá trị là một số nguyên
Tìm giá trị nguyên của x để biểu thức A = \(\frac{6x-4}{2x+1}\)có giá trị là số nguyên.
ĐỂ BIỂU THỨC \(A=\frac{6x-4}{2x+1}\)NHẬN GIÁ TRỊ NGUYÊN
TA CÓ: \(A=\frac{6x-4}{2x+1}=\frac{6x+3-7}{2x+1}=\frac{3.\left(2x+1\right)-7}{2x+1}\)
\(=\frac{3.\left(2x+1\right)}{2x+1}-\frac{7}{2x+1}=3-\frac{7}{2x+1}\)
ĐỂ \(A\inℤ\)
\(\Rightarrow\frac{7}{2x+1}\inℤ\)
\(\Rightarrow7⋮2x+1\)
\(\Rightarrow2x+1\inƯ_{\left(7\right)}=\left(1;-1;7;-7\right)\)
NẾU \(2x+1=1\Rightarrow2x=0\Rightarrow x=0\left(TM\right)\)
\(2x+1=-1\Rightarrow2x=-2\Rightarrow x=-1\left(TM\right)\)
\(2x+1=7\Rightarrow2x=6\Rightarrow x=3\left(TM\right)\)
\(2x+1=-7\Rightarrow2x=-8\Rightarrow x=-4\left(TM\right)\)
VẬY X = ....................
CHÚC BN HỌC TỐT!!!!!!
Ta có :
\(A=\frac{6x-4}{2x+1}=\frac{6x+3-7}{2x+1}=\frac{3\left(2x+1\right)}{2x+1}-\frac{7}{2x+1}=3-\frac{7}{2x+1}\)
Để A là số nguyên hay nói cách khác thì \(7⋮\left(2n+1\right)\)\(\Rightarrow\)\(\left(2n+1\right)\inƯ\left(7\right)\)
Mà \(Ư\left(7\right)=\left\{1;-1;7;-7\right\}\)
Suy ra :
\(2x+1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(x\) | \(0\) | \(-1\) | \(3\) | \(-4\) |
Vậy \(x\in\left\{-4;-1;0;3\right\}\)
Chúc bạn học tốt ~
Để A có giá trị nguyên thì: \(6x-4⋮2x+1\)
\(\Leftrightarrow\left(6x-4\right)-3\left(2x+1\right)⋮\left(2x+1\right)\)
\(\Leftrightarrow\) \(6x-4-6x-3⋮2x+1\)
\(\Leftrightarrow-7⋮2x+1\Rightarrow2x+1\)là \(Ư\left(-7\right)\)
Mà \(Ư\left(-7\right)=\left\{-7;-1;1;7\right\}\)
\(\Rightarrow2x+1\in\left\{-7;-1;1;7\right\}\)
\(\Rightarrow n\in\left\{-3;-1;0;3\right\}\)
tìm giá trị nguyên của x để biểu thức a=(6x-4)/(2x+1) có giá trị là số nguyên
Để \(A\) là số nguyên thì \(\left(6x-4\right)⋮\left(2x+1\right)\)
Ta có :
\(6x-4=6x+3-7=3\left(2x+1\right)-7\) chia hết cho \(2n+1\) \(\Rightarrow\) \(\left(-7\right)⋮\left(2x+1\right)\) \(\Rightarrow\) \(\left(2x+1\right)\inƯ\left(-7\right)\)
Mà \(Ư\left(-7\right)=\left\{1;-1;7;-7\right\}\)
Suy ra :
\(2x+1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(x\) | \(0\) | \(-1\) | \(3\) | \(-4\) |
Vậy \(x\in\left\{0;-1;3;-4\right\}\)
Năm mới zui zẻ nhá ^^
Tìm giá trị nguyên x để biểu thức A 6x 4 2x 1 có giá trị là số nguyên
Tìm giá trị nguyên x để biểu thức A 6x 4 2x 1 có giá trị là số nguyên
Tìm giá trị nguyên x để biểu thức A=6x-4/2x+1 có giá trị là số nguyên
\(A=\frac{6x-4}{2x+1}=\frac{6x+3-7}{2x+1}=\frac{3\left(2x+1\right)-7}{2x+1}=3-\frac{7}{2x+1}\)
Để \(3-\frac{7}{2x+1}\) là số nguyên <=> \(\frac{7}{2x+1}\) là số nguyên
=> 2x + 1 \(\in\) Ư(7) = { - 7; - 1; 1; 7 }
Ta có : 2x + 1 = - 7 <=> 2x = - 8 => x = - 4 (TM)
2x + 1 = - 1 <=> 2x = - 2 => x = - 1 (TM)
2x + 1 = 1 <=> 2x = 0 => x = 0 (TM)
2x + 1 = 7 <=> 2x = 6 => x = 3 (TM)
Vậy x = { - 4; - 1; 0; 3 }
\(\Leftrightarrow6x-4=\left(6x+3\right)-7\)
Để \(A\in Z\Leftrightarrow\left(6x+3\right)-7⋮2x+1\)
Mà \(6x+3⋮2x+4\Rightarrow7⋮2x+1\Rightarrow2x+1\inƯ\left(7\right)\)
\(\RightarrowƯ\left(7\right)=\left(7;1;-1;-7\right)\)
Nếu \(2x+1=7\Rightarrow x=3\)
Nếu \(2x+1=1\Rightarrow x=0\)
Nếu \(2x+1=-1\Rightarrow x=-1\)
Nếu \(2x+1=-7\Rightarrow x=-4\)
x = { -4 ; -1 ; 0 ; 3}
tk cho tớ đi mà !Sát Thủ otonahi
Cho biểu thức:A=\(\dfrac{2x-1}{x+2}\)
a) Tìm số nguyên x để biểu thức A là phân số
b)Tìm các số nguyên x để biểu thức A có giá trị là 1 số nguyên
c)Tìm các số nguyên x để biểu thức A đạt giá trị lớn nhất,giá trị nhỏ nhất
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
1. Cho biểu thức A= \(\sqrt{4-2x}\)
a) Tìm điều kiện của x để biểu thức có nghĩa.
b) Tìm giá trị của biểu thức khi x=2, x=0,x=1,x=-6,x=-10.
c) Tìm giá trị của biến x để giá trị của biểu thức bằng 0? Bằng 5? Bằng 10?
2. Cho biểu thức P= \(\frac{9}{2\sqrt{x}-3}\)
a) Tìm điều kiện của X để biểu thức P xác định..
b) Tính giá trị của biểu thức khi x=4, x=100
c) Tìm giá trị của x để P=1, P=7
d) Tìm các số nguyên x để giá trị của P cũng là một số nguyên.
3. Cho biểu thức \(\frac{2\sqrt{x}+9}{\sqrt{x}+1}\)
a) Tìm điều kiện xác định của x để biểu thức Q được xác định.
b) Tính giá trị của biểu thức khi x=0,x=1,x=16.
c) Tìm giá trị của x để Q=1,Q=10.
d) Tìm các số nguyên x để giá trị của Q cũng là một số nguyên.
Giải hộ với ạ! Gấp lắm T.T
1) a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)
b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)
Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)
Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)
Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)
Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)
c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)
\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)
\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)
2) a) P xác định \(\Leftrightarrow x\ge0\)và \(2\sqrt{x}-3\ne0\Leftrightarrow\sqrt{x}\ne\frac{3}{2}\Leftrightarrow x\ne\frac{9}{4}\)
b) Thay x = 4 vào P, ta được: \(P=\frac{9}{2\sqrt{4}-3}=\frac{9}{1}=9\)
Thay x = 100 vào P, ta được: \(P=\frac{9}{2\sqrt{100}-3}=\frac{9}{17}\)
c) P = 1 \(\Leftrightarrow\frac{9}{2\sqrt{x}-3}=1\Leftrightarrow2\sqrt{x}-3=9\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=36\)
P = 7 \(\Leftrightarrow\frac{9}{2\sqrt{x}-3}=7\Leftrightarrow2\sqrt{x}-3=\frac{9}{7}\)
\(\Leftrightarrow2\sqrt{x}=\frac{30}{7}\Leftrightarrow\sqrt{x}=\frac{15}{7}\Leftrightarrow x=\frac{225}{49}\)
d) P nguyên \(\Leftrightarrow9⋮2\sqrt{x}-3\)
\(\Leftrightarrow2\sqrt{x}-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Lập bảng:
\(2\sqrt{x}-3\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(9\) | \(-9\) |
\(\sqrt{x}\) | \(2\) | \(1\) | \(3\) | \(0\) | \(6\) | \(-3\) |
\(x\) | \(4\) | \(1\) | \(9\) | \(0\) | \(36\) | \(L\) |
Vậy \(x\in\left\{1;4;9;0;36\right\}\)
Tìm giá trị nguyên của \(x\) để giá trị của biểu thức sau có giá trị là số nguyên. \(A=\dfrac{2x^3+x^2+2x+5}{2x+1}\)
\(A=\left(2x+1\right)\left(x^2+1\right)+\dfrac{4}{2x+1}\) (chia đa thức)
Để A nguyên \(\Rightarrow4⋮2x+1\Rightarrow\left(2x+1\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow x=\left\{-\dfrac{5}{2};-\dfrac{3}{2};-1;0;\dfrac{1}{2};\dfrac{3}{2}\right\}\)
x thỏa mãn đk đề bài là \(x=\left\{-1;0\right\}\)
Tìm các giá trị nguyên của x để giá trị của biểu thức \(\frac{2x-1}{2x+3}\)là một số nguyên
Ta có : \(\frac{2x-1}{2x+3}=\frac{2x+3-4}{2x+3}=1-\frac{4}{2x+3}\)
Để \(\frac{2x-1}{2x+3}\in Z\) thì \(\frac{4}{2x+3}\in Z\)
Suy ra 4 chia hết cho 2x + 3
=> 2x + 3 thuộc Ư(4) = {-4;-2;-1;1;2;4}
=> 2x = {-7;-5;-4;-2;-1;1}
=> x = -1