Tìm hai số tự nhiên liên tiếp nhỏ nhất sao cho tổng các chữ số của mỗi số đều:
a) chia hết cho 8;
b) chia hết cho 17;
Giải được cho 3 tích
tìm 2 số tự nhiên liên tiếp nhỏ nhất sao cho tổng các chữ số của mỗi số đều
a chia hết cho 8 b chia hết cho 17
Tìm hai số tự nhiên liên tiếp nhỏ nhất sao cho tổng các chữ số của mỗi số đều:
a) chia hết cho 8;
b) chia hết cho 17;
giải được cho tích
Tìm 2 số tự nhiên liên tiếp nhỏ nhất sao cho tổng các chữ số của mỗi số đều chia hết cho 17
Không bao giờ xảy ra trường hợp này vì nếu tổng các chữ số thứ nhất chia hết cho 17 thì số thứ hai các chữ số của nó +1 thì nó nguyên tố cùng nhau rồi nên không tìm được.
tìm 2 số tự nhiên liên tiếp nhỏ nhất sao cho tổng các chữ số của mỗi số đều chia hết cho 17
Các bạn giúp mình nhé!
Tìm 2 số tự nhiên liên tiếp nhỏ nhất sao cho tổng các chữ số :
a) chia hết cho 8
b) chia hết cho 17
1, n.(n+1) . (n+2) . (n+3) chia hết cho 3 và 8
2,
a) Có tồn tại số tự nhiên n để n2 + n + 2 chia hết cho 5 hay không?
b) Tìm số tự nhiên n nhỏ nhất sao cho n vừa là tổng của 5 số tự nhiên liên tiếp, vừa là tổng của 7 số tự nhiên liên tiếp
3,
Tìm số nguyên x, biết:
a) 2x - 1 là bội số của x - 3
b) 2x + 1 là ước của 3x + 2
c) (x - 4).(x + 2) + 6 không là bội của 9
d) 9 không là ước của (x - 2).(x + 5) + 11
4,
Tìm số nguyên a, b, sao cho:
a) (2a - 1).(b2 + 1) = -17
b) (3 - a).(5 - b) = 2
c) ab = 18, a + b = 11
5,
Tìm số nguyên x, sao cho:
a) A = x2 + 2021 đạt giá trị nhỏ nhất
b) B = 2022 - 20x20 - 22x22 đạt giá trị lớn nhất.
1)chứng tỏ rằng
a)tổng 3 số tự nhiên liên tiếp là 1 số chia hết cho 3
b)tổng 4 số tự nhiên liên tiếp là 1 số không chia hết cho 4
2)tìm x,y để 30xy chia hết cho cả 2 và 3, và chia cho 5 dư 2
3)viết số tự nhiên nhỏ nhất có 5 chữ số,tận cùng bằng 6 và chia hết cho 9
4)trong các cặp số tự nhiên (x,y)thỏa mãn
(2x+1) x (y-3)=10
cặp số tự nhiên xy lớn nhất là
5)cho a là chữ số tự nhiên 0 nhỏ nhất sao cho n2-1 chia hết cho 2 và 5
6)có tất cả bao nhiêu số tự nhiên nhỏ nhất cóa 4 chữ só trong đó có 2 chữ số đầu giống nhau và hai chữ số cuối giống nhau (biết rằng trong mỗi số đó chữ số hàng trăm khác chữ số hàng chục)
a; Tổng của ba số tự nhiên liên tiếp có dạng:
n; n + 1; n + 2
Tổng của ba số tự nhiên liên tiếp có là:
n + n + 1 + n +2 = 3n + 3 = 3.(n+ 1) ⋮ 3(đpcm)
Bài 3. Tìm các chữ số sao cho số 7a4b chia hết cho 4 và chia hết cho 7
Bài 2. Tìm số tự nhiên n để 3n +
Bài 4. Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Bài 5. Chứng tỏ rằng tổng của 4 số tự nhiên liên tiếp không chia hết cho 4
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
Bài 3:
\(\overline{7a4b}\) ⋮ 4 ⇒ \(\overline{4b}\)⋮ 4 ⇒ b = 0; 4; 8
Nếu b = 0 ta có: \(\overline{7a40}\)⋮ 7
⇒ 7040 + a \(\times\) 100 ⋮ 7
1005\(\times\) 7+ 5 + 14a + 2a ⋮ 7
5 + 2a ⋮ 7 ⇒ 2a = 2; 9; 16⇒ a = 1; \(\dfrac{9}{3}\);8 (1)
Nếu b = 8 ta có: \(\overline{7a4b}\) = \(\overline{7a48}\)⋮ 7
⇒ 7048 + a\(\times\) 100 ⋮ 7
1006\(\times\) 7 + 6 + 14a + 2a ⋮ 7
6 + 2a ⋮ 7 ⇒ 2a = 1; 8; 15 ⇒ a = \(\dfrac{1}{2}\); 4; \(\dfrac{15}{2}\) (2)
Nếu b = 4 ta có: \(\overline{7a4b}\) = \(\overline{7a44}\) ⋮ 7
⇒ 7044 + 100a ⋮ 7
1006.7 + 2 + 14a + 2a ⋮ 7
2 + 2a ⋮ 7 ⇒ 2a = 5; 12;19 ⇒ a = \(\dfrac{5}{2}\); 6; \(\dfrac{9}{2}\) (3)
Kết hợp (1); (2); (3) ta có:
(a;b) = (1;0); (8;0); (4;8); (6;4)
1. a) Viết số tự nhiên nhỏ nhất có 3 chữ số khác nhau chia hết cho 3.
b) Viết số tự nhiên nhỏ nhất có 3 chữ số khác nhau chia hết cho 9.
2. a) Chứng minh tổng 3 số tự nhiên liên tiếp chia hết cho 3
b) Chứng minh tích 3 số tự nhiên liên tiếp chia hết cho 3
1 a) 105
b)108
câu 2 m quên rùi bạn sorry nhé
Bài 1
a) 102
b)108
Bài 2
a) Gọi số cần tìm là a;a+1;a+2
Ta có: a+a+1+a+1=3a+3
Vi 3chia hết cho 3=>3a sẽ chia hết cho 3
=3a+3 chia hết cho 3
=>tổng của 3 số tự nhiên liên tiếp sẽ chia hết cho 3