so sánh C và D biết C=\(\dfrac{1957}{2007}\) D= \(\dfrac{1935}{1985}\)
so sánh C và D biết C=\(\dfrac{1957}{2007}\) với D=\(\dfrac{1935}{1985}\)
\(C=\dfrac{1957}{2007}\) và \(D=\dfrac{1935}{1985}\)
\(\Rightarrow\left\{{}\begin{matrix}C=\dfrac{1957}{2007}\\D=\dfrac{1935}{1985}\end{matrix}\right.\\\Rightarrow\left\{{}\begin{matrix}C=1-\dfrac{50}{2007}\\D=1-\dfrac{50}{1985}\end{matrix}\right. \)
Vì \(\dfrac{50}{2007}<\dfrac{50}{1985}\)
\(\Rightarrow1-\dfrac{50}{2007}>1-\dfrac{50}{1985}\\\Rightarrow C>D\)
a ) so sánh c và d biết :
C = \(\dfrac{1957}{2007}\) với D = \(\dfrac{1935}{1985}\)
b )hãy so sánh A và B
cho A = \(\dfrac{2016^{2016}+2}{2016^{2016}-1}\) và B = \(\dfrac{2016^{2016}}{2016^{2016}-3}\)
c ) so sánh M và N biết :
M = \(\dfrac{10^{2018}+1}{10^{2019}+1}\) ; N = \(\dfrac{10^{2019}+1}{10^{2020}+1}\)
Giải:
a)Ta có:
C=1957/2007=1957+50-50/2007
=2007-50/2007
=2007/2007-50/2007
=1-50/2007
D=1935/1985=1935+50-50/1985
=1985-50/1985
=1985/1985-50/1985
=1-50/1985
Vì 50/2007<50/1985 nên -50/2007>-50/1985
⇒C>D
b)Ta có:
A=20162016+2/20162016-1
A=20162016-1+3/20162016-1
A=20162016-1/20162016-1+3/20162016-1
A=1+3/20162016-1
Tương tự: B=20162016/20162016-3
B=1+3/20162016-3
Vì 20162016-1>20162016-3 nên 3/20162016-1<3/20162016-3
⇒A<B
Chúc bạn học tốt!
Làm tiếp:
c)Ta có:
M=102018+1/102019+1
10M=10.(102018+1)/202019+1
10M=102019+10/102019+1
10M=102019+1+9/102019+1
10M=102019+1/102019+1 + 9/102019+1
10M=1+9/102019+1
Tương tự:
N=102019+1/102020+1
10N=1+9/102020+1
Vì 9/102019+1>9/102020+1 nên 10M>10N
⇒M>N
Chúc bạn học tốt!
a. So sánh C và D biết: C = 1957/ 2007 với D = 1935/ 1985
b. Cho: A = 2016 mũ 2016 + 2/ 2016 mũ 2016 - 1 và B = 2016 mũ 2016/2016 mũ 2016 - 3. Hãy so sánh A và B
c.So sánh M và N biết: M = 10 mũ 2018 + 1/ 10 mũ 2019 + 1 ; N = 10 mũ 2019 +1/ 10 mũ 2020 + 1
MAI THI RỒI MÀ CHƯA BIẾT GIẢI BÀI NÀY NHƯ THẾ NÀO ?
NÊN NHỜ MỌI NGƯỜI GIẢI GIÚP. CẢM ƠN TRƯỚC
so sánh 2 phân số
\(\dfrac{c}{d}.....\dfrac{a}{b}\)
biết: c=8, d-c=7
biết: a =7 , b-2= a
ai nhanh và làm đầy đủ mik tick
d-c=7⇒d=7+c=7+8=15
\(\Rightarrow\dfrac{c}{d}=\dfrac{8}{15}\)
b-2=a⇒b=a+2=7+2=9
\(\Rightarrow\dfrac{a}{b}=\dfrac{7}{9}\)
Ta có: \(\dfrac{8}{15}=\dfrac{8\times3}{15\times3}=\dfrac{24}{45}\)
\(\dfrac{7}{9}=\dfrac{7\times5}{9\times5}=\dfrac{35}{45}\)
Vì \(\dfrac{24}{45}< \dfrac{35}{45}\Rightarrow\dfrac{c}{d}< \dfrac{a}{b}\)
So sánh A và B biết : \(A=\dfrac{10^{2006}+1}{10^{2007}+1},B=\dfrac{10^{2007}+1}{10^{2008}+1}\)
Cho a,b,c,d là các số thực dương thỏa mãn \(\dfrac{a}{b}< \dfrac{c}{d}\)
Hãy so sánh \(\dfrac{a}{b}\) và \(\dfrac{a+c}{b+d}\)
\(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\\ \Rightarrow ad+ab< bc+ab\\ \Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\)\(\dfrac{a}{b}< \dfrac{a+c}{b+d}\)
Cho các số hữu tỉ x=\(\dfrac{a}{b}\) ; y=\(\dfrac{c}{d}\) và z = \(\dfrac{m}{n}\) . Biết ad -bc =1 , cn-bm=1
a) Hãy so sánh các số x,y,z
b) So sánh y với t biết t = \(\dfrac{a+m}{b+m}\) với b + n \(\ne\)0
(Sửa \(cn-bm\rightarrow cn-dm\))
Ta có :
\(\left\{{}\begin{matrix}ad-bc=1\\cn-dm=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}ad=1+bc\\cn=1+dm\end{matrix}\right.\)
\(\dfrac{x}{y}=\dfrac{a}{b}.\dfrac{d}{c}=\dfrac{ad}{bc}=\dfrac{1+bc}{bc}=1+\dfrac{1}{bc}>1\left(bc>0\right)\)
\(\Rightarrow x=\dfrac{a}{b}>y=\dfrac{c}{d}\left(2\right)\)
\(\dfrac{y}{z}=\dfrac{c}{d}.\dfrac{n}{m}=\dfrac{cn}{dm}=\dfrac{1+dm}{dm}=1+\dfrac{1}{dm}>1\left(dc>0\right)\)
\(\Rightarrow y=\dfrac{c}{d}>z=\dfrac{m}{n}\left(2\right)\)
\(\left(1\right);\left(2\right)\Rightarrow x>y>z\)
so sánh c và d : C= \(\dfrac{2^{2024}-3}{2^{2023}-1}\) và D =\(\dfrac{2^{2023}-3}{2^{2022}-1}\)
\(C=\dfrac{2^{2024}-3}{2^{2023}-1}=\dfrac{2.2^{2023}-2-1}{2^{2023}-1}=\dfrac{2\left(2^{2023}-1\right)-1}{2^{2023}-1}=2-\dfrac{1}{2^{2023}-1}\)
\(D=\dfrac{2^{2023}-3}{2^{2022}-1}=\dfrac{2.2^{2022}-2-1}{2^{2022}-1}=\dfrac{2\left(2^{2022}-1\right)-1}{2^{2022}-1}=2-\dfrac{1}{2^{2022}-1}\)
Ta có
\(2^{2023}>2^{2022}\Rightarrow2^{2023}-1>2^{2022}-1\)
\(\Rightarrow\dfrac{1}{2^{2023}-1}< \dfrac{1}{2^{2022}-1}\Rightarrow2-\dfrac{1}{2^{2023}-1}>2-\dfrac{1}{2^{2022}-1}\)
\(\Rightarrow C>D\)
1) So sánh :
a)128 và 812
b) (-5)39 và (-2)91
c) 5020 và 255010
2) Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng :
a) \(\left(\dfrac{a+b}{c+d}\right)^3=\dfrac{a-b^3}{c-d^3}\)
3) Tìm giá trị lớn nhất , giá trị nhỏ nhất của biểu thức :
d) D=(2x+\(\dfrac{1}{3}\))4 - 1
e) E= \(-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)
f) G=|x-2008|+|x-8|
Mn ơi ai bt làm câu nào thì giúp mik cậu đó với !!
1. a.
Ta có: 128 = (124)2 = 207362
Ta thấy: 20736 > 81
=> 128 > 812
(Các câu khác cũng tương tự nhé.)