.Chứng minh rằng \(\frac{12n+1}{30n+2}\)là phân số tối giản
chứng minh rằng \(\frac{12n+1}{30n+2}\)là phân số tối giản
Bạn ơi kết bạn đí rồi mình giải cho!
ta có ucln của 12m+1, 30n+2 =d
=> (12n+1)chia hết cho d thì 5(12n+1) chia hết cho d hay 60n+5 chia hết cho d
30n+2 : d => 2(30n+2) chia hết cho d => 60n+4 chia hết cho d
suy ra hiệu của 60n+5 và 60n+4 chia hết cho d hay 1 chia hết cho d => d là ước của 1
suy ra d bằng 1
suy ra phân số trên là tối giản
\(giải:\)giả sử ƯCLN(12n+1.30n+2)=d
=> ( 12n+1) chia hết cho d => 5(12n+1) chia hết cho d => 60n +5 chia hết cho d
\(và\)(30n+2) chia hết cho d => 2(30n+2) chia hết cho d => 60n + 4 chia hết cho d
=> (60n + 5) - (60n +4) chia hết cho d
=> 60n +5 -60n -4 chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)
=> ƯCLN ( 12n+1,30n+2)=1
=>\(\frac{12n+1}{30n+2}\)\(là\)\(phân\)\(số\)\(tối\)\(giản\)
k cho mình nha, ai k cho mình thì mình k lại
chúc ban học tốt
chứng minh rằng 12n+1/30n+2 là phân số tối giản
Gọi d là ƯCLN ( 12n+1; 30n+2 )
=> 12n + 1 ⋮ d => 5.( 12n + 1 ) ⋮ d => 60n + 5 ⋮ d ( 1 )
=> 30n + 2 ⋮ d => 2.( 30n + 2 ) ⋮ d => 60n + 4 ⋮ d ( 2 )
Từ ( 1 ) và ( 2 ) => [ ( 60n + 5 ) - ( 60n + 4 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN ( 12n + 1 ; 30n + 2 ) = 1 nên 12n+1/30n+2 là p/s tối giản
Gọi d là ước chung của 12n+1 và 30n+2 ta có:
5.(12n+1)-2.(30n+2)=60n+5-60n-4=1 chia hết cho d
Vậy d=1 nên 12n+1 và 30n+2 là hai số nguyên tố cùng nhau, do đó \(\frac{12n+1}{30n+2}\) là phân số tối giản
Chứng minh rằng phân số sau là phân số tối giản:
\(\frac{12n+1}{30n+2}\)
Gọi d là UCLN (12n+1 và 30n+2)
=>12n+1 chia hết cho d và 30n+2 chia hết cho d
=>5.(12n+1)=60n+5 chia hết cho d và 2.(30n+2)=60n+4 chia hết cho d
=>(60n+5)-(60n+4)=60n+5-60n-4=1 chia hết cho d
=> d là 1
=>12n+1/30n+2 tối giản
Đặt ƯCLN(12n+1, 30n+2) = d
=> (12n+1)-(30n+2) chia hết cho d
=> 5.(12n+1)-2.(30n+2) chia hết cho d
=> 60n+5-60n-4 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN (12n+1, 30n + 2) = 1
=> \(\frac{12n+1}{30n+2}\)tối giản (đpcm).
Đặt UCLN(12n + 1 ; 30n + 2) = d
12n + 1 chia hết cho d => 60n + 5 chia hết cho d
30n + 2 chia hết cho d => 60n + 4 chia hết cho d
=> [(60n + 5) - (60n +4)] chia hết cho d
1 chia hết cho d => d = 1
Vậy UCLN(12n + 1 ; 30 n + 2) = 1
< = > \(\frac{12n+1}{30n+2}\) là phân số tối giản
Chứng Minh Rằng :
\(\frac{12n+1}{30n+2}\)là phân số tối giản
Gọi d=(12n+1;30n+2)
=>12n+1 chia hết cho d;30n+2 chia hết cho d
=>5(12n+1)-2(30n+2) chia hết cho d
=>60n+5-60n-4 chia hết cho d
=>1 chia hết cho d mà d>0 => d=1
=>12n+1;30n+2 là 2 số nguyên tố cùng nhau
=> 12n+1/30n+2 là phân số tối giản.
vao cau hoi tuong tu nha
ung ho nha moi nguoi
Gọi d là ƯC ( 12n+1, 30n+2 )
=> 12n+1 ⋮ d => 60n+5 ⋮ d ( 1 )
=> 30n+2 ⋮ d => 60n+4 ⋮ d ( 2 )
Từ ( 1 ) và ( 2 ) => [ ( 60n+5 ) - ( 60n+4 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯC ( 12n+1, 30n+2 ) = 1 => \(\frac{12n+1}{30n+2}\) là phân số tối giản
Chứng minh rằng 12n + 1/30n + 2 là phân số tối giản (n thuộc N)
Gọi (12n + 1; 30n + 2) = d
=> 12n + 1 chia hết cho d
30n + 2 chia hết cho d
Xét hiệu: 5(12n + 1) - 2(30n + 2) chia hết cho d
<=> 60n + 5 - 60n - 4 chia hết cho d
<=> 1 chia hết cho d
=> d = 1
Vậy (12n + 1)/(30n + 2) là phân số tối giản
Gọi ước chung lớn nhất của 12n + 1 và 30n + 2 là d, ta sẽ chứng minh d = 1.
Ta có : (12n + 1)⋮ d nên 2.(30n + 2)⋮ d hay (60n + 4)⋮ d.
=> [(60n + 5) - (60n + 4)⋮ d.
=> (60n + 5 - 60n - 4)⋮ d.
=> 1⋮ d => d = 1.
Hay 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau.
Vậy : phân số \(\frac{12n+1}{30n+2}\)là phân số tối giản.
Chứng tỏ rằng \(\frac{12n+1}{30n+2}\)là phân số tối giản
Gọi d = ƯCLN(12n + 1; 30n + 2) (d thuộc N*)
=> 12n + 1 chia hết cho d; 30n + 2 chia hết cho d
=> 5.(12n + 1) chia hết cho d; 2.(30n + 2) chia hết cho d
=> 60n + 5 chia hết cho d; 60n + 4 chia hết cho d
=> (60n + 5) - (60n + 4) chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(12n + 1; 30n + 2) = 1
=> phân số 12n + 1/30n + 2 là phân số tối giản
Bài giải :
Gọi d = ƯCLN(12n + 1; 30n + 2) (d thuộc N*)
=> 12n + 1 chia hết cho d; 30n + 2 chia hết cho d
=> 5.(12n + 1) chia hết cho d; 2.(30n + 2) chia hết cho d
=> 60n + 5 chia hết cho d; 60n + 4 chia hết cho d
=> (60n + 5) - (60n + 4) chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(12n + 1; 30n + 2) = 1
=> Phân số 12n + 1/30n + 2 là phân số tối giản
Chứng tỏ rằng \(\frac{12n+1}{30n+2}\)là phân số tối giản
Gọi d là ƯC(12n+1,30n+2). Ta có :
( 12n + 1 ) d => 5.( 12n + 1) d hay ( 30n + 5 ) d
( 30n + 2 ) d => 2 . ( 30n + 2 ) d hay ( 30n + 4 ) d
=> ( 30n + 5 ) - ( 30n + 4 ) = 1
=> d = 1
Vậy : là phân số tối giản
Ta có : \(\frac{12n+1}{30n+2}\)là phân số tối giản <=> ƯCLN(12n + 1; 30n + 2) \(\in\) {1; -1}
Gọi ƯCLN(12n + 1; 30n + 2) là d
=> \(12n+1⋮d\) => \(5\left(12n+1\right)⋮d\) => \(60n+5⋮d\)
\(30n+2⋮d\) \(2\left(30n+2\right)⋮d\) \(60n+4⋮d\)
=> (60n + 5) - (60n + 4) = 1 \(⋮\)d => d \(\in\){1; -1}
Vậy \(\frac{12n+1}{30n+2}\)tối giản
Gọi \(ƯCLN\left(12n+1;30n+2\right)\)là \(d\left(d\in N^∗\right)\)
Ta có :
\(12n+1⋮d\Rightarrow5\left(12n+1\right)⋮d\Rightarrow60n+5⋮d\left(1\right)\)
\(30n+2⋮d\Rightarrow2\left(30n+2\right)⋮d\Rightarrow60n+4⋮d\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Nên \(12n+1;30n+2\)là 2 số nguyên tố cùng nhau
\(\Rightarrow\frac{12n+1}{30n+2}\)là p/s tối giản \(\left(đpcm\right)\)
chứng tỏ rằng \(\frac{12n+1}{30n+2}\)là phân số tối giản
Gọi d là ƯCLN của tử và mẫu .
=>12n +1 chia hết cho d 60n+5 chia hết cho d
=> 30n +2chia hết cho d 60n +4 chia hết cho d
=> (60n+5) -(60n+4) chia hết cho d
=>1 chia hết cho d
=> d=1 => điều phải chứng minh (đpcm)
chứng minh rằng phân số sau tối giản với mọi số nguyên n
\(\frac{12n+1}{30n+2}\)
Gọi d là : ƯCLN của : 12n + 1 và 30n + 2
Khi đó : 12n + 1 chia hết cho d , 30n + 2 chia hết cho d
<=> 5(12n + 1) chia hết cho d , 2(30n + 2) chia hết cho d
<=> 60n + 5 chia hết cho d , 60n + 4 chia hết cho d
=> (60n + 5) - (60n + 4) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy ƯCLN của 12n + 1 và 30n + 2 = 1
Do đó phân số \(\frac{12n+1}{30n+2}\) tối giản \(\forall n\in Z\)
Gọi d là : ƯCLN của : 12n + 1 và 30n + 2
Khi đó : 12n + 1 chia hết cho d, 30n + 2 chia hết cho d
<=> 5(12n + 1) chia hết cho d, 2(30n + 2) chia hết cho d
<=> 60n + 5 chia hết cho d, 60n + 4 chia hết cho d
=> (60n + 5) - (60n + 4) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy ƯCLN của 12n +1 và 30n +2 = 1
Do đó phân số : \(\frac{12n+1}{30n+2}\) tối giản \(\forall n\in Z\) .
Chúc bạn học tốt !