Định a và b để :
\(A=a^4-6ax^2+ax^2+bx+1\) là bình phuong cua 1 so khác 0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
định a và b để đa thức A = x^4 - 6x^3 + ax^ax + bx + 1 là bình phương của một đa thức khác
định a,b để \(A=x^4-6x^3+ax^2+bx+1\) là bình phương của 1 đa thức khác.
Xác định Parabol (P) : y = ax^2 + bx + c ( a khác 0 ) biết (P) đi qua :
a, điểm E (0; 6) và hàm số y = ax^2 - bx + c đạt giá trị nhỏ nhất là 4 khi x = -2
b, điểm F (1; 16) và cắt Ox tại các điểm có hoành độ là -1 và 5.
Cho phuong trinh \(ax^2+bx+1=0\) voi a,b la cac so huu ti.Tim a,b biet \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)la nghiem cua phuong trinh
xác định các hệ số a,b để đa thức
\(A=x^4-2x^3+3x^2+ax+b\) là bình phuong của 1 đa thức
\(\left(x^2-x+1\right)^2=x^4+x^2+1-2x^3+2x^2-2x=x^4-2x^3+3x^2-2x+1\)
Vậy a = -2; b = 1.
Cho phương trình ax^2 +bx + c = 0 (a khác 0) và a - b + c = 0
a) Chứng tỏ x1 = -1 là 1 nghiệm của pt
b) Dùng định lý Viet về tích 2 nghiệm để tìm x2
Cảm ơn mb <3
Tìm a,b để đa thức
A=x^4-6x^3+ax^2+bx+1 là bình phương của 1 đa thức khác
Tam thức bậc 2 là đa thức có dạng f(x)=ax2+bx+c với a,b,c là hằng số (a khác 0). Hãy xác định các hệ số a,b,c, biết f(1)=4; f(-1)=8 và a-c= -4
xét f(x) =ax^2+bx+c
ta co f(1)=a+b+c=4, f(-1)=a-b+c=8
=> 2(a+c)=12
=> a+c=6 kết hợp a-c=-4 => a=1, c=5, kết hợp a+b+c=4 => b=-2
Vậy a=1, b=-2, c=5 là giá trị cần tìm.
Tam thức bậc 2 (theo biến x) là đa thức có dạng f(x)=ax^2+bx+c với a,b,c là các hằng số và a khác 0. Xác định các hệ số a,b,c biết: f(1)=4; f(-1)=8 và a-c=-4
Giúp với!