Những câu hỏi liên quan
PL
Xem chi tiết
LD
Xem chi tiết
TY
Xem chi tiết
YN
14 tháng 2 2023 lúc 21:06

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{999.1000}+1\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{999}-\dfrac{1}{1000}+1\)

\(=1-\dfrac{1}{1000}+1\)

\(=\dfrac{1999}{1000}\).

Bình luận (0)
HT
14 tháng 2 2023 lúc 20:56

dễ lắm nha

 

Bình luận (0)
DH
Xem chi tiết
BD
13 tháng 4 2017 lúc 20:49

các bạn ơi giúp nhanh nha mình đang cần rất gấp

Bình luận (0)
DM
Xem chi tiết
XO
29 tháng 1 2020 lúc 20:53

\(B=\frac{\frac{2016}{1000}+\frac{2016}{999}+...+\frac{2016}{501}}{\frac{-1}{1.2}+\frac{-1}{3.4}+...+\frac{-1}{999.1000}}=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{999.1000}\right)}\)

\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}\right)}\)

\(=\frac{2016\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\right)\right]}\)

\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{500}\right)\right]}\)

\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+....+\frac{1}{999}+\frac{1}{1000}\right)}=\frac{2016}{-1}=-2016\)

Vậy B = - 2016

Bình luận (0)
 Khách vãng lai đã xóa
DM
29 tháng 1 2020 lúc 21:26

Bạn Xyz cho mik hỏi ở phần mẫu số tại sao lại có -2*(1/2+1/4+...+1/1000) vậy? Nó ở đâu ra thế?

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
NH
Xem chi tiết
CT
21 tháng 6 2016 lúc 16:23

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{999\cdot1000}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}\)

\(=1-\frac{1}{1000}\)

\(=\frac{999}{1000}\)

Bình luận (0)
TN
21 tháng 6 2016 lúc 17:09

1/1*2+1/2*3+1/3*4+...+1/999*1000

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}\)

\(=1-\frac{1}{1000}\)

\(=\frac{999}{1000}\)

Bình luận (0)
LM
Xem chi tiết
LH
3 tháng 2 2017 lúc 14:58

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}\)

\(=1-\frac{1}{1000}=\frac{999}{1000}\)

Bình luận (0)
HD
Xem chi tiết
CT
1 tháng 4 2016 lúc 19:38

La 1,999 nha!

Bình luận (0)
NR
1 tháng 4 2016 lúc 19:26

Là 1,999 mình học rồi

Bình luận (0)
TP
1 tháng 4 2016 lúc 19:29

\(\frac{1999}{1000}\)

ủng hộ mk

Bình luận (0)
NN
Xem chi tiết
HT
22 tháng 1 2017 lúc 20:51

1/1*2+1/2*3+,,,,,+1/999*1000+1

=1/1-1/2+1/2-1/3+,,,,+1/999-1/1000+1

=1-1/1000+1

=1+1-1/1000

=2-1/1000

=1999/1000

Bình luận (0)
TM
22 tháng 1 2017 lúc 20:55

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}+1\)

Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}\)

\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}\)

\(\Rightarrow A=1-\frac{1}{1000}=\frac{999}{1000}\)

Thay vào ta có : \(\frac{999}{1000}+1=\frac{1999}{1000}\)

Vậy ...

Bình luận (0)
BT
22 tháng 1 2017 lúc 21:02

1 / 1x2 + 1 / 2x3 + 1/ 3x4 +....+ 1/999x1000 + 1

= ( 1 / 1 x2 + 1/ 2 x3 + 1/ 3x4 + ....+ 1/999x 1000 ) + 1

= ( 1 x1 / 1 x2 + 1x2 / 2x3 + 1x 3 / 3x4 + ..... 1x 999 / 999x 1000 ) + 1

= ( 1 - 1 / 2 + 1 / 2 - 1 / 3 - 1 / 3 - 1 / 4 + ........+ 1 / 999 - 1 / 1000 )  + 1 

= ( 1 - 1 / 1000 ) + 1

= 999 / 1000 + 1

= 1999 / 1000

Tk tớ nha

Bình luận (0)