Chứng minh S = 1/5 +1/13+ 1/14+ 1/15 +1/61+ 1/62 <1/2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
chứng minh rằng s=1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/2
Chứng minh S = 1/5 +1/13+ /14+1/15+1/61+1/62+1/63 < 1/2
Ta có:
\(\frac{1}{5}=\frac{1}{5}\)
\(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}
Ta có: \(S=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)
chứng minh rằng: S=1/5+1/13+1`/14+1/15+1/61+1/62+1/63<1/2
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}
Ta có:
S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)<1/5+1/12.3+1/60.3
=>S<1/5+1/4+1/20=10/20
Hay S<1/2
Chứng minh
S= 1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/2
Ta có : S = 1/5 + ( 1/13 + 1/14 + 1/15 ) + ( 1/61 + 1/62 + 1/63 ) < 1/5 + 1/12 x 3 + 1/60 x 3
S < 1/5 + 1/4 + 1/20 = 10/20 = 1/2
S < 1/2
vừa nãy ấn nhầm k mk nha
CHO 1/5+1/13+1/14+1/15+1/61+1/62+1/63
cHỨNG minh 3/7<S<1/2
Chứng minh rằng ; S = 1/5+1/13+1/14+1/15+1/61+1/62+1/63 < 1/2
ai nhanh nhất mình sẽ tick cho đấy
chứng minh 1/5+1/13+1/14+1/15+1/61+1/62+1/63 < 1/2
Ta có :
S = \(\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)
Chứng minh;
S=1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/2
S=1/2+1/2^2+1/2^3+...+1/2^20<1
bài này có trông sách nâng cao và phataienf toán 6ss tr
Chứng minh rằng:
S=\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{2}\)
Giải:
Ta có:
\(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)
\(=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\) \(\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)
Nhận xét:
\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{4}\)
\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}=\dfrac{1}{20}\)
\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)
Vậy \(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\) \(< \dfrac{1}{2}\) (Đpcm)