Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
LM
Xem chi tiết
NA
Xem chi tiết
HG
20 tháng 6 2015 lúc 18:58

Ta có: 

\(\frac{1}{5}=\frac{1}{5}\)

\(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}

Bình luận (0)
DT
20 tháng 6 2015 lúc 18:58

Ta có: \(S=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)

Bình luận (0)
NG
Xem chi tiết
SN
31 tháng 5 2015 lúc 10:05

\(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}

Bình luận (0)
RL
31 tháng 5 2015 lúc 10:03

Ta có:

S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)<1/5+1/12.3+1/60.3

=>S<1/5+1/4+1/20=10/20

Hay S<1/2

Bình luận (0)
DM
Xem chi tiết
H24
18 tháng 4 2016 lúc 19:41

Ta có : S = 1/5 + 

Bình luận (0)
NH
18 tháng 4 2016 lúc 19:45

cho mình xin k nha

Bình luận (0)
H24
18 tháng 4 2016 lúc 19:46

Ta có : S = 1/5 + ( 1/13 + 1/14 + 1/15 ) + ( 1/61 + 1/62 + 1/63 ) < 1/5 + 1/12 x 3 + 1/60 x 3

S < 1/5 + 1/4 + 1/20 = 10/20 = 1/2

S < 1/2

vừa nãy ấn nhầm k mk nha

Bình luận (0)
HH
Xem chi tiết
LD
Xem chi tiết
PH
Xem chi tiết
H24
18 tháng 8 2015 lúc 16:21

Ta có : 

S = \(\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)

Bình luận (0)
HA
Xem chi tiết
NP
13 tháng 4 2015 lúc 17:15

bài này có trông sách nâng cao và phataienf toán 6ss tr

Bình luận (0)
JJ
Xem chi tiết
HQ
3 tháng 5 2017 lúc 21:17

Giải:

Ta có:

\(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)

\(=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\) \(\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)

Nhận xét:

\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{4}\)

\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}=\dfrac{1}{20}\)

\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)

Vậy \(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\) \(< \dfrac{1}{2}\) (Đpcm)

Bình luận (0)