CMR: x+\(6565^5\)chia hết cho 5 khi và chỉ khi x chia hết cho 5
Chứng minh rằng
a) với x;y thuộc N,CMR: 5*x+47*y chia hết cho 17 khi và chỉ khi x+6*y chia hết cho 17
b) với x;y thuộc N,CMR: x+2*y chia hết cho 5 khi và chỉ khi 3*x+16*y chia hết cho 5
a/
\(x+6y⋮17\Rightarrow5\left(x+6y\right)=5x+30y⋮17\)
\(5x+47y=\left(5x+30y\right)+17y\)
\(5x+30y⋮17\left(cmt\right);17y⋮17\Rightarrow5x+47y⋮17\)
b/
\(3x+16y⋮5\Rightarrow2\left(3x+16y\right)=6x+32y=\left(5x+30y\right)+\left(x+2y\right)⋮5\)
Mà \(5x+30y⋮5\Rightarrow x+2y⋮5\)
a) cho A=18x+17y và B=x+2y. CM A chia hất cho 19 khi và chỉ khi B chia hết cho 19 với mọi số nguyên x,y
b) cho a, b là các số nguyên. CMR 3a-b chia hết cho 5 khi và chỉ khi a-2b chia hết cho 5
c) cho x, y là 2 sô nguyên khác 0. Cm 3x^2-10y chia hết` cho 13 khi và chỉ khi x^2+y chia hết cho 13
Cho A=18x+17y và B=x+2y
a,Chứng minh: A chia hết cho 19 khi và chỉ khi B chia hết cho 19 với mọi x,y thuộc Z
b,Cho a,b thuộc Z; chứng minh 3a-b chia hết cho 5 khi và chỉ khi a-2b chia hết cho 5
c,Cho x,y thuộc Z*.Cmr: 3x2-10y chia hết cho 13 khi và chỉ khi x2+y chia hết cho 13
(Giải cụ thể)
NHANH NHA MÌNH CẦN GẤP LẮM
a) A = 18x + 17y = 19x + 19y - (x + 2y) = 19(x + y) - (x + 2y) = 19(x + y) - B
Vậy A chia hết cho 19 khi và chỉ khi B chia hết cho 19.
b) Tương tự, M = 3a - b = 5a - 5b - 2a + 4b = 5(a - b) - 2(a - 2b)
2 không chia hết cho 5 nên M chia hết cho 5 khi và chỉ khi a - 2b chia hết cho 5.
c) Tương tự: P = 3x2 - 10y = 13x2 - 10x2 - 10y = 13x2 - 10(x2 + y)
10 không chia hết cho 13 nên P chia hết cho 13 khi và chỉ khi x2 + y chia hết cho 13.
b,Hướng dẫn: Xét A+b or A-B or mA+nB or mA-nB
a) A = 18x + 17y = 19x + 19y - (x + 2y) = 19(x + y) - (x + 2y) = 19(x + y) - B
Vậy A chia hết cho 19 khi và chỉ khi B chia hết cho 19.
b) Tương tự, M = 3a - b = 5a - 5b - 2a + 4b = 5(a - b) - 2(a - 2b)
2 không chia hết cho 5 nên M chia hết cho 5 khi và chỉ khi a - 2b chia hết cho 5.
c) Tương tự: P = 3x2 - 10y = 13x2 - 10x2 - 10y = 13x2 - 10(x2 + y)
10 không chia hết cho 13 nên P chia hết cho 13 khi và chỉ khi x2 + y chia hết cho 13.
Câu hỏi : Chứng minh rằng với mọi số nguyên x,y thì
a) 2.x^2 + 3.y chia hết cho 17 khi và chỉ khi 9.x^2 + 5.y chia hết cho 17
b) 5.x^2 - 4.y chia hết cho 23 khi và chỉ khi 3.x^2 - 7.y chia hết cho 23
Bài 1:Cho a1,a2,....,a2018 thuộc Z
CMR:a1+a2+...+a2018 chia hết cho 30 khi và chỉ khi a1^5 + a2^5 +...+ a2018^5 chia hết cho 30\
Bài 2: Tìm x,y thuộc N* sao cho x+y+1 chia hết cho xy
Bài 3: tìm x,y thuộc N* sao cho y+1 chia hết cho x, x+1 chia hết cho y
Bài 4:Tìm x,y thuộc N* sao cho y+2 chia hết cho x, x+2 chia hết cho y
Bài 5: Tìm x,y thuộc N* sao cho 2x+1 chia hết cho y, 2y+1 chia hết cho x
Bài 6: CMR: Với mọi n thuộc Z ta có n^5 + 5n chia hết cho 6
Bài 7:CMR: Với mọi n thuộc Z ta có n(2n+7)(7n+1) chia hết cho 6
Giúp mình nhé, cảm ơn các bạn nhiều!!!
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
Câu hỏi : Chứng minh rằng với mọi số nguyên x,y thì
a) 2.x^2 + 3.y chia hết cho 17 khi và chỉ khi 9.x^2 + 5.y chia hết cho 17
b) 5.x^2 - 4.y chia hết cho 23 khi và chỉ khi 3.x^2 - 7.y chia hết cho 23
ảnh đẹp đó nhưng hổng có liên quan
Câu hỏi : Chứng minh rằng với mọi số nguyên x,y thì
a) 2.x^2 + 3.y chia hết cho 17 khi và chỉ khi 9.x^2 + 5.y chia hết cho 17
b) 5.x^2 - 4.y chia hết cho 23 khi và chỉ khi 3.x^2 - 7.y chia hết cho 23
9x2 + 5y chia hết cho 17
mà ƯCLN(4 ; 17) = 1
nên 4(9x2 + 5y) chia hết cho 17
hay 36x2 + 20y chia hết cho 17
mà 34x2 chia hết cho 17 ; 17y chia hết cho 17
nên 36x2 + 20y - 34x2 - 17y = 2x2 + 3y chia hết cho 17
***
3x2 - 7y chia hết cho 23
mà ƯCLN(17 ; 23) = 1
nên 17(3x2 - 7y) chia hết cho 23
hay 51x2 - 119y chia hết cho 23
mà 46x2 chia hết cho 23 ; 115y chia hết cho 23
nên 51x2 - 119y - 46x2 + 115y = 5x2 - 4y chia hết cho 23
Chúc bạn học tốt ^^
\(\left(2x+3y\right)⋮17\Leftrightarrow13\left(2x+3y\right)⋮17\Leftrightarrow\left(26x+39y\right)⋮17\)
\(\Leftrightarrow\left(26x-17x+39y-34y\right)⋮17\Leftrightarrow\left(9x+5y\right)⋮17\)
Ta có 9x + 5y \(⋮\)17
<=> 17x + 17y - 8x - 12y \(⋮\)17
<=> 17(x + y) - 4(2x + 3y) \(⋮\)17
Vì 17(x + y)\(⋮\)17
<=> 4(2x + 3y) \(⋮\)17
<=> 2x + 3y \(⋮\) 17
=> ĐPCM
CMR A=2^n+6^n+8^n+9^n chia hết cho 5 khi và chỉ khi n không chia hết cho 4