cho a+b+c=0 cmr : a^4+b^4+c^4=1/2. (a^2+b^2+c^2)^2
Cho a+b+c=0 CMR
a) a^4+b^4+c^4=2(a^2b^2+b^2c^2+c^2a^2)
b) a^4+b^4+c^4= 2(ab+bc+ca)^2
c) a^4+b^4+c^4= 1/2(a^2+b^2+c^2)^2
Cho hai số thực a, b, c thỏa mãn a+b+c=0 cmr a^4+b^4+c^4= 1/2(a^2+b^2+c^2)^2
Cho các số thực a, b, c thỏa mãn a+b+c=0.cmr a^4+b^4+c^4= 1/2(a^2+b^2+c^2)^2
Cho a+b+c=0 CMR
1. a^4 + b^4 + c^4 = 2( a^2b^2 + b^2c^2 + c^2a^2 )
2. a^4 + b^4 + c^4 = 2( ab + bc + ca )^2
3. a^4 + b^4 + c^4 = (a^2 + b^2 + c^2)^2 /2
cho a + b +c =0. CMR : \(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)^2\)
Cho a+b+c=0 .CMR : \(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)^2\)
Cho ba số a,b,c thỏa mãn a+b+c=0.CMR (a^2 +b^2 +c^2)^2 =2(a^4 +b^4 +c^4)
(a^2+b^2+c^2) x 2 = 2 x (a^4+b^4+c^4)
suy ra: (a+b+c)^2 x 2 = (a+b+c)^4 x 2
Mà a+b+c= 0(gt)
suy ra: 0^2 x 2=0^4 x 2
0 = 0
=)))
Cho a + b+ c= 0 . CMR : ( a^2 + b^2 + c^2 )^2 = 2(a^4 + b^a + c^4 )
\(a+b+c=0\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\)
\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4\left(a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right)\)
\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Rightarrow2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)
Vậy ta có đpcm
Cho a,b,c là các số khác 0 thỏa a+b+c=0.Cmr:
\(\dfrac{a^4}{a^4-\left(b^2-c^2\right)^2}+\dfrac{b^4}{b^4-\left(c^2-a^2\right)^2}+\dfrac{c^4}{c^4-\left(a^2-b^2\right)^2}=\dfrac{3}{4}\)
\(\frac{a^4}{\left(a^2-b^2+c^2\right)\left(a^2+b^2-c^2\right)}=\frac{a^4}{\left[\left(a-b\right)\left(a+b\right)+c^2\right]\left[\left(a-c\right)\left(a+c\right)+b^2\right]}\)
\(\frac{a^4}{\left[-c\left(a-b\right)+c^2\right]\left[-b\left(a-c\right)+b^2\right]}=\frac{a^4}{4bc\left(b+c\right)^2}=\frac{a^4}{4a^2bc}\)
Tương tự với 2 phân thức còn lại, ta cũng có : \(\frac{b^4}{b^4-\left(c^2-a^2\right)^2}=\frac{b^4}{4ab^2c};\frac{c^4}{c^4-\left(a^2-b^2\right)^2}=\frac{c^4}{4abc^2}\)
\(VT=\frac{a^4}{4a^2bc}+\frac{b^4}{4ab^2c}+\frac{c^4}{4abc^2}=\frac{a^4bc+ab^4c+abc^4}{4a^2b^2c^2}=\frac{abc\left(a^3+b^3+c^3\right)}{4a^2b^2c^2}\)
\(VT=\frac{a^3+b^3+c^3}{4abc}\)
Mà \(a+b+c=0\) nên \(a^3+b^3+c^3=3abc\) ( tự cm )
\(\Rightarrow\)\(VT=\frac{3abc}{4abc}=\frac{3}{4}\) ( đpcm )
Chúc bạn học tốt ~