Chứng minh nếu M thuộc z thì A=M.(M+2)-M(M-9)-11laf bội của 11
Chứng minh rằng nếu m thuộc Z thì A=m.(m+2)-m.(m-9)-11 là bội của 7
Giải chi tiết nha!
A = m.(m + 2) - m.(m - 9) - 11 = m(m + 2 - m + 9) - 11 = m.11 - 11 = 11(m - 1) chia hết cho 11
Dễ thế mà bảo đề sai
A = m(m + 2) - m(m - 9) - 11
A = m(m + 2 - m + 9) - 11
A = m.11 - 11
A = (m - 1).11
Đến đây là tịt nhưng nếu chứng minh chia hết cho 11 thì đúng
a) tìm x thuộc Z,để x+7 chia hết cho x (x khác 0)
b) tìm n thuộc Z,để cho 2n+1 là ước của 2n-1
c)Chứng tỏ tổng S chia hết cho 50
S=(x-1)+(x-3)+(x-5)+....+(x-99)
d) tìm số nguyên n để n+1 là bội của n-1
e) chứng minh rằng nếu m thuộc Z thì A=m.(m+2)-m.(m-9)-11 là bội của 11
f) tìm tất cả các số nguyên a,b sao cho a.b=(-2)
P/S: các bn làm nhanh giúp mình trong hôm ny nghen
Chứng minh rằng nếu a thuộc Z thì:
a,M=a.(a+2)-a.(a-5) là bội của 7
b,N=(a-2).(a+3)-(a-3).(a+2) là số chẵn
chứng minh rằng nếu a thuộc Z thì
a. M=a.(a+2)-a.(a-5) Là bội của 7
b. N=(a-2).(a+3)-(a-3).(a+2) Là số chẵn
chứng minh rằng nếu a thuộc Z thì
a. M=a.(a+2)-a.(a-5)-7 Là bội của 7
b. N=(a-2).(a+3)-(a-3).(a+20) Là số chẵn
M=a.(a+2)-a.(a-5)-7
M=a.[(a+2)-(a-5)]-7
M=a.7-7
ma M>7 hoac M=0
nên M là bội của 7
nếu a lẻ thì goi a la 2n+1
N=(2n+1-2).(2n+1+3)-(2n+1-3).(2n+1+20)
N=(2n-1).(2n+4)-(2n-2).(2n+21)
N=lẻ nhân chẵn trừ chẵn nhân lẻ
N= chẵn - chẵn = chẵn nên nếu a là số lẻ thì N chẵn
nếu a chẵn thì gọi a là 2n
N=(2n-2).(2n+3)-(2n-3).(2n+20)
N=chẵn nhân lẻ trừ lẻ nhân chẵn
N=chẵn trừ chẵn = chẵn
vậy N là số chẵn với mọi a
chứng minh rằng nếu a thuộc Z thì
a. M=a.(a+2)-a.(a-5)-7 Là bội của 7
b. N=(a-2).(a+3)-(a-3).(a+20) Là số chẵn
a. Ta có: M= a.(a+2)-a.(a-5)-7
=a.(a+2-a+5)-7
= 7.a-7=7.(a -1) chia hết cho 7.
Vậy M là bội của 7(đpcm)
vậy còn bài thứ 2 thì như thế nào ? giải luôn đi bạn
7 nha bn
chuc bn hoc tot
happy new year
chứng minh rằng nếu a thuộc Z thì
a. M=a.(a+2)-a.(a-5)-7 Là bội của 7
b. N=(a-2).(a+3)-(a-3).(a+20) Là số chẵn
chứng minh rằng nếu m chia hết 2 thì (m^3+20*m) chia hết cho 48 với m thuộc Z
m = 2k thì
(2k)^3 + 20*2k = 8k^3 + 40k = 8k(k^2 + 5)
Cần chứng minh k(k^2 + 5) chia hết cho 6 là xong.
+ nếu k chẵn => k(k^2 + 5) chia hết cho 2
+ nếu k lẻ => k^2 lẻ => k^2 + 5 chẵn => k(k^2 + 5) chia hết cho 2
Vậy k(k^2 + 5) chia hết cho 2
+ nếu k chia hết cho 3 => k(k^2 + 5) chia hết cho 3
+ nếu k chia 3 dư 1 => k^2 + 5 = (3l + 1)^2 + 5 = 9l^2 + 6l + 6 chia hết cho 3
+ nếu k chia 3 dư 2 => k^2 + 5 = (3l + 2)^2 + 5 = 9l^2 + 12l + 9 chia hết cho 3
Vậy k(k^2 + 5) chia hết cho 3
=>dpcm
CMR nếu a thuộc Z thì : a) M= a(a+2) - a(a-5)-7 là bội của 7
M= a(a + 2) - a(a - 5) - 7 = a(a + 2 - a + 5) - 7 = 7a - 7 = 7(a - 1) chia hết cho 7