tìm số nguyên n sao cho 4n-5 chia hết cho n-3
tim so nguyen n sao cho 4n-5 chia het cho n-3
Ta có: 4n - 5 \(⋮\)n - 3
=> 4.(n - 3 ) + 2 \(⋮\)n - 3
=> 2 \(⋮\) n - 3 ( vì 4.( n - 3 ) \(⋮\) n - 3 )
=> n - 3 \(\in\)Ư(2) = { -2; -1; 1; 2 }
=> n \(\in\){ 1; 2; 4; 5 }
Vậy: n \(\in\){ 1; 2; 4; 5 }
ta co :
4n-5=4{n-3}+12-5=4{n-3}+7
vì 4{n-3} chia hết cho n-3 nên để 4n-5 chia hết cho n-3 thì 7 chia hết cho n-3
suy ra n-3 e uoc cua 7
suy ra n -3 e{-7;-1;1;7}
suy ra n e{-4;2;4;10}
ĐK : n -3 khác 0 suy ra n khác 3
ta có : 4n-5=4n-6+1=2.(n-3)+1
vì 2.(n-3) chia hết cho n-3 nên để 4n-5 chia hết cho n-3 thì 1 phải chia hết cho n-3 suy ra n-3 thuộc ước của 1. ước của 1 là -1;1
ta có : n-3=1 suy ra n=4
n-3=-1 suy ra n=2
k nha. nhớ đấy hi hi
1,Tim cac so nguyen x va y sao cho (x-2)(y-1) =5.
2,Tim so nguyen n sao cho n+5 chia het cho 2n-1
n + 5 chia hết cho 2n - 1
=> 2 ( n + 5 ) chia hết cho 2n - 1
=> 2n + 10 chia hết cho 2n - 1
2n - 1 + 11 chia hết cho 2n - 1
Mà 2n - 1 chia hết cho 2n - 1
=> 11 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư( 11 )
=> 2n - 1 thuộc { - 1 ; 1 ; 11 ; - 11 }
=> 2n thuộc { 0 ; 2 ; 12 ; - 10 }
=> n thuộc { 0 ; 1 ; 6 ; - 5 }
\(\left(x-2\right)\left(y-1\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét các trường hợp :
\(\hept{\begin{cases}x-2=5\\y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=2\end{cases}}}\)\(\hept{\begin{cases}x-2=-5\\y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=0\end{cases}}}\)\(\hept{\begin{cases}x-2=1\\y-1=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=6\end{cases}}}\)\(\hept{\begin{cases}x-2=-1\\y-1=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-4\end{cases}}}\)Tim so nguyen n sao cho n+5 chia het cho n-2
<=>(n-2)+7 chia hết n+5
=>7 chia hết n+5
=>n+5\(\in\){1,-1,7,-7}
=>n\(\in\){-4,-6,2,-12}
Để n+5 chia hết n-2
=> n-2+7 CHIA HẾT n+2
=> 7 chia hết n+2
=> n+2 \(\in\) Ư(7)
=> Ư(7)={-1;1;-7;7}
Ta có:
n+5 chia het cho n-2
suy ra n-2+7 chia het cho n-2
Vi n-2 chia het cho n-2 suy ra 7 chia het cho n-2
Do n thuoc Z nen n-2 thuoc Z
suy ra n-2 thoc{1;-1;7;-7}
n thuoc {3;1;9;-5}
Vay ...
tim so nguyen n sao cho n+2 chia het cho n-3
Ta có n+2=n-3+5
Để n+2 chia hết cho n-3 thì n-3+5 chia hết cho n-3
Vì n nguyên => n-3 nguyên
=> n-3 thuộc Ư(5)={-5;-1;1;5}
Ta có bảng
n-3 | -5 | -1 | 1 | 5 |
n | -2 | 2 | 4 | 8 |
=> 5 chia hết cho n-3
=> n-3 thuộc u của 5
tự làm ra nha
Tim so tu nhien n sao cho:
a)n+2 chia het cho n-1
b)2n+7 chia het cho n+1
c)2n+1 chia het cho 6-n
d)3n chia het cho 5-2n
e)4n +3 chia het cho 2n+6
a, Tìm n thuộc Z, biết n+2 chia hết cho n-1 - Nguyễn Thủy Tiên
Tim so tu nhien N sao cho:
a)n+3 chia het cho n-1
b)4n+3 chia het cho 2n +1
a, \(n+3⋮n-1\)
\(n-1+4⋮n-1\)
\(4⋮n-1\)hay \(n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\)
n - 1 | 1 | 2 | 4 |
n | 2 | 3 | 5 |
\(4n+3⋮2n+1\Leftrightarrow2\left(2n+1\right)+1⋮2n+1\Leftrightarrow1⋮2n+1\)
Lập bảng tương tự
Tim cac so nguyen n sao cho n2-5 chia het cho n+1
suy ra : n.[n+1]-[n+1]-4 chia hết n+1
suy ra -4 chia hết n+1
suy ra n+1 thuộc ước của -4
tự giải tiếp
nha
Tim so nguyen n sao cho n2+3 chia het cho n-1
Tim so tu nhien n sao cho
(n+2) chia het cho (n+1)
(2n+7) chia het cho (n+1)
3n chia het cho (5 * 24)
(4n+3) chia het cho (2n-6)
(2n+1) chia het cho (6-n)
Bài 1
n + 2 ⋮ n + 1
n + 1 + 1 ⋮ n + 1
1 ⋮ n + 1
n + 1 \(\in\) Ư(1) = {-1; 1}
n \(\in\) {-2; 0}
Vì n \(\in\) N nên n = 0
Vậy n = 0
Bài 2:
2n + 7 ⋮ n + 1
2(n + 1) + 5 ⋮ n + 1
5 ⋮ n + 1
n + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) {-6; -2; 0; 4}
Vì n \(\in\) N nên n \(\in\) {0; 4}
Vậy n \(\in\) {0; 4}
Bài 3
3n ⋮ 5.24
n ⋮ 40
n = 40k (k \(\in\) N)
Vậy n = 40k ; k \(\in\) N
tim so nguyen n de
n - 7 chia het cho n - 5
n + 3 chia het cho n - 2
1) n-7chia hết cho n-5
=>n-5-2 chia hết cho n-5
=>2 chia hết cho n-5
=>n-5 thuộc Ư(2)=(-2;-1;1;2)
=>n thuộc (3;4;6;7)
2) n+3 chia hết cho n-2
=>n-2+5 chia hết cho n-2
=>5 chia hết cho n-2
=>n-2 thuộc Ư(5)=(-5;-1;1;5)
=>n thuộc -3;1;3;7
Học tốt