Chứng minh nếu n là hợp số thì \(2^n-1\) cũng là hợp số
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh nếu n là hợp số thì 2^n _1 cũng là hợp số
1. Chứng minh rằng với mọi số tự nhiên n thì ƯCLN(21 4;14 3) 1 n n
2. Chứng minh rằng: Nếu p là số nguyên tố lớn hơn 3 và 2 1 p cũng là số nguyên tố thì 4 1 p
là hợp số?
a) chứng minh rằng với mọi số nguyên n>1 thì n4 + 4n là hợp số.
b) nếu p và 8p2 +1 là các số nguyên tố thì (8p2+2p+1) cũng là các số nguyên tố.
Chứng minh rằng nếu 2^n - 1 là số nguyên tố (n-2) thì 2^n + 1 là hợp số
chứng minh rằng với mọi số tự nhiên n thì UWCLN(21n+4;14n+3)=1
chứng minh rằng : nếu p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thifif 4p+1 là hợp số ?
Chứng minh rằng nếu 2n – 1 là số nguyên tố (n > 2) thì 2n + 1 là hợp số.
Xột số A = (2n – 1)2n(2n + 1)
A là tích của 3 số tự nhiên liờn tiệp nên A ⋮ 3
Mặt khỏc 2n – 1 là số nguyên tố ( theo giả thiết )
2n không chia hết cho 3
Vậy 2n + 1 phải chia hết cho 3 ⇒ 2n + 1 là hợp số.
Chứng minh rằng với mọi số tự nhiên n thì UCLN (21n + 4 ;14n + 3 ) = 1
CMR : Nếu p là số nguyên tố lớn hơn 3 và 2p + 1 cũng là số nguyên tố thì 4p + 1 là hợp số .
Chứng minh rằng nếu n2-1 là số nguyên tố (n>2 ) thì 2n+1 là hợp số
Bạn xem lời giải chi tiêt ở đường link phía dưới nhé:
Câu hỏi của Bùi Nguyễn Việt Anh - Toán lớp 6 - Học toán với OnlineMath
ngu cút hỏi nhiều
thằng điên
nghĩa là mày đéo làm được
CMR : Nếu n là hợp số thì \(2^n-1\)cũng là hợp số
Nếu n là hợp số thì n có dạng \(pk\) với p,k là các số nguyên dương
Khi đó:\(2^n-1=2^{pk}-1=\left(2^p\right)^k-1⋮2^p-1\)
Như vậy ta có đpcm