Với n thuộc N hãy so sánh:
\(A=\frac{n^3-9}{n^3+1}\) và \(B=\frac{n^3-8}{n^3+2}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
so sánh : A=n^3-9/n^3+1 và B= n^5-8/n^5+2 với n thuộc N
TÌM n THUỘC N*
\(\frac{1}{9}.27^n=3^n\)
\(\frac{1}{2}.2^n+4.2^n=9.5^n\)
SO SÁNH
\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^9}\)VÀ \(B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^9}\)
So sánh :A=\(\frac{n^3-9}{n^3+1}\)và \(\frac{n^5-8}{n^5+2}\)với n\(\in\)N
so sánh : A=n^3-9/n^3+1 và B= n^5-8/n^5+2 với n thuộc N
So sánh:
A=\(\frac{n^3-9}{n^3+1}\) và B=\(\frac{n^5-8}{n^5+2}\) với n\(\in\)N
Biết n!=1.2.3...n \(\left(n\inℕ^∗;n\ge2\right)\)và \(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+......+\frac{2014}{2015!}\)
Hãy so sánh A với 1
anh cũng đang định hỏi câu này
Ta có \(A=\frac{1}{2!}+\frac{2}{3!}+...+\frac{2014}{2015!}\)
=> \(A=\frac{2-1}{2!}+\frac{3-1}{3!}+...+\frac{2015-1}{2015!}\)
=> \(A=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+...+\frac{2015}{2015!}-\frac{1}{2015!}\)
=> \(A=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+...+\frac{1}{2014!}-\frac{1}{2015!}\)
=> \(A=1-\frac{1}{2015!}< 1\)
Cho \(M=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+.............+\frac{8}{9!}+\frac{9}{10!}\) . So sánh M với 1 ( với n! = 1.2.3.4..........(n-1).n ; \(n\in\) N*
giúp mình với
So sánh các phân số sau:
a,\(\frac{n}{n+1}\) và \(\frac{n+2}{n+3}\)(n thuộc N)
b, \(\frac{n}{2n+1}và\frac{3n+1}{6n+3}\)(n thuộc N)
Mình mới lớp 5 nên không biết làm bài này.
Xin lỗi nha! Chúc bạn may mắn......mình chính là Đào Minh Tiến!
a) \(\frac{n}{n+1}\)và \(\frac{n+2}{n+3}\)
\(\frac{n}{n+1}=\frac{n\cdot\left(n+3\right)}{\left(n+1\right)\cdot\left(n+3\right)}\)
\(\frac{n+2}{n+3}=\frac{\left(n+2\right)\cdot\left(n+1\right)}{\left(n+3\right)\cdot\left(n+1\right)}\)
So sánh : \(n\cdot\left(n+3\right)\)và \(\left(n+2\right)\cdot\left(n+3\right)\)
\(n\cdot\left(n+3\right)=n^2+3n\)
\(\left(n+2\right)\cdot\left(n+3\right)=n^2+5n+6\)
\(n^2+3n< n^2+5n+6\)
\(\Leftrightarrow\frac{n}{n+1}< \frac{n+2}{n+3}\)
b) \(\frac{n}{2n+1}\)và \(\frac{3n+1}{6n+3}\)
\(\frac{n}{2n+1}=\frac{n\cdot\left(6n+3\right)}{\left(2n+1\right)\cdot\left(6n+3\right)}\)
\(\frac{3n+1}{6n+3}=\frac{\left(3n+1\right)\cdot\left(2n+1\right)}{\left(6n+3\right)\cdot\left(2n+1\right)}\)
So sánh : \(n\cdot\left(6n+3\right)\)và \(\left(3n+1\right)\cdot\left(2n+1\right)\)
\(n\cdot\left(6n+3\right)=6n^2+3n\)
\(\left(3n+1\right)\cdot\left(2n+1\right)=6n^2+5n+1\)
\(6n^2+3n< 6n^2+5n+1\)
\(\Leftrightarrow\frac{n}{2n+1}< \frac{3n+1}{6n+3}\)
so sánh m và n biết:
A=\(\frac{3+6+9+...+3.m}{m}\)> B= \(\frac{3+6+9+...+3.n}{n}\)
Có A>B
So sánh m và n