Những câu hỏi liên quan
HN
Xem chi tiết
KK
27 tháng 11 2018 lúc 12:06

Vào đây tham khảo nha ! : Câu hỏi của Phạm Chí Cường - Toán lớp 6 | Học trực tuyến

Bình luận (0)
LN
Xem chi tiết
LL
Xem chi tiết
LP
Xem chi tiết
TQ
26 tháng 5 2023 lúc 17:01

loading...

Bình luận (0)
LP
25 tháng 5 2023 lúc 20:41

 Bạn ơi, nếu như vậy thì thầy mình sẽ bắt mình chứng minh là chỉ có 2 số 3 với 5 là 2 số có dạng \(2^n-1\) với \(2^n+1\) đó bạn. Nếu bạn không phiền thì chứng minh giúp mình với nhé. Mình cảm ơn bạn trước.

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
AD
17 tháng 3 2020 lúc 20:27

a)    { 1;-1;13;-13}

b)     {-12;-9;-6;-3}

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
GL
4 tháng 3 2020 lúc 17:36

Nhận thấy n=2 thỏa mãn điều kiện

Với n>2 ta có: 

\(n^6-1=\left(n^3-1\right)\left(n^3+1\right)=\left(n^3-1\right)\left(n+1\right)\left(n^2-n+1\right)\)

Do đó tất cả các thừa số nguyên tố của \(n^2-n-1\)chia hết cho \(n^3-1\)hoặc \(n^2-1=\left(n-1\right)\left(n+1\right)\)

Để ý rằng \(\left(n^2-n+1;n^3-1\right)\le\left(n^3+1;n^3-1\right)\le2\)

Mặt khác \(n^2-n+1=n\left(n-1\right)+1\)là số lẻ, do đó tất cả các thừa số nguyên tố của \(n^2-n-1\)chia hết cho \(n+1\)

Nhưng \(n^2-n+1=\left(n+1\right)\left(n-2\right)+3\)

Vì vậy ta phải có \(n^2-n+1=3^k\left(k\in Z^+\right)\)

Vì \(n>2\Rightarrow k\ge2\)

do đó \(3|n^2-n+1\Rightarrow n\equiv2\left(mod3\right)\)

Nhưng mỗi TH \(n\equiv2,5,8\left(mod9\right)\Rightarrow n^2-n+1\equiv3\left(mod9\right)\)(mâu thuẫn)

Vậy n=2

Bình luận (0)
 Khách vãng lai đã xóa
NC
4 tháng 3 2020 lúc 19:07

Bài làm rất hay mặc dù làm rất tắt.

Tuy nhiên:

Dòng thứ 4: Ước số nguyên tố của \(n^2-n+1\)chia hết cho \(n^3-1\)hoặc \(n^2-1\)( em viết thế này không đúng rồi )

------> Sửa: ước số nguyên tố của \(n^2-n+1\) chia hết \(n^3-1\) hoặc  \(n^2-1\)

Hoặc:  ước số nguyên tố của \(n^2-n+1\) là ước  \(n^3-1\) hoặc  \(n^2-1\)

Dòng thứ 6 cũng như vậy:

a chia hết b khác hoàn toàn a chia hết cho b 

a chia hết b nghĩa là a là ước của b ( a |b)

a chia hết cho b nghĩa là b là ước của a.( \(a⋮b\))

3 dòng cuối cô không hiểu  em giải thích rõ giúp cô với. Please!!!!

Nhưng cô có cách khác dễ hiểu hơn này:

\(n^2-n+1=3^k\);

 \(n+1⋮3\)=> tồn tại m để : n + 1 = 3m

=> \(\left(n+1\right)\left(n-2\right)+3=3^k\)

<=>\(3m\left(n+1-3\right)+3=3^k\)

<=> \(m\left(n+1\right)-3m+1=3^{k-1}\)

=> \(m\left(n+1\right)-3m+1⋮3\)

=> \(1⋮3\)vô lí

Bình luận (0)
 Khách vãng lai đã xóa
GL
5 tháng 3 2020 lúc 12:37

Vâng, em cảm ơn cô

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
PM
Xem chi tiết
AY
21 tháng 12 2017 lúc 21:29

a)\(Ư\left(-15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)

b) \(BC\left(-13,18\right)=\left\{0;234;468;.....................\right\}\)

Bình luận (0)
NN
13 tháng 8 2018 lúc 13:14

-1,-3,-5,-15

Bình luận (0)
CD
23 tháng 8 2018 lúc 19:15

-1,-3,-5,-15

Bình luận (0)