giup to bai nay voi
1/12+1/20+1/30+1/42+1/56+1/72+1/90+1/110+1/132
1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72+1/90 + 1/110 + 1/132 = ?
1/12+1/20+1/30+1/42+1/56+1/72+1/90+1/110+1/132
Giải ra cho mình nhé
\(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{132}=\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{11\cdot12}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{3}-\frac{1}{12}=\frac{4}{12}-\frac{1}{12}=\frac{3}{12}=\frac{1}{4}\)
Chú ý: \(\cdot=\times\)
Đặt \(A=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{132}\)
\(A=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{11.12}\)
\(A=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\)
\(\Rightarrow A=\frac{1}{3}-\frac{1}{12}=\frac{1}{4}\)
=1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10+1/10.11+1/11.12
=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11+1/11-1/12
=1/3-0-0-0-0-0-0-0-0-1/12
=4/12-1/12=3/12=1/4
A=-1/20+-1/30+-1/42+-1/56+-1/72+-1/90+-1/110+-1/132
Ta viết lại biểu thức A như sau:
\(A=-\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{11.12}\right)\)
\(A=-\left(\dfrac{5-4}{4.5}+\dfrac{6-5}{5.6}+\dfrac{7-6}{6.7}+...+\dfrac{12-11}{11.12}\right)\)
\(A=-\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{11}-\dfrac{1}{12}\right)\)
\(A=-\left(\dfrac{1}{4}-\dfrac{1}{12}\right)\)
\(A=-\dfrac{1}{6}\)
tính nhanh
1/20+1/30+1/42+1/56+1/72+1/90+1/110+1/132
\(\dfrac{1}{20}=\dfrac{1}{4x5}=\dfrac{1}{4}-\dfrac{1}{5}\)
Tương tự các phân số khác
S= \(\dfrac{1}{4}-\dfrac{1}{12}=\dfrac{1}{6}\)
\(\dfrac{1}{20}+\dfrac{1}{30}\)+ \(\dfrac{1}{42}\)+\(\dfrac{1}{56}\)+\(\dfrac{1}{72}\)+\(\dfrac{1}{90}\)+\(\dfrac{1}{110}\)+\(\dfrac{1}{132}\)
= \(\dfrac{1}{4\times5}\)+\(\dfrac{1}{5\times6}\)+\(\dfrac{1}{6\times7}\)+\(\dfrac{1}{7\times8}\)+\(\dfrac{1}{8\times9}\)+\(\dfrac{1}{9\times10}\)+\(\dfrac{1}{10\times11}\)+\(\dfrac{1}{11\times12}\)
= \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)+\(\dfrac{1}{9}\)-\(\dfrac{1}{10}\)+\(\dfrac{1}{10}\)-\(\dfrac{1}{11}\)+\(\dfrac{1}{11}\)-\(\dfrac{1}{12}\)
= \(\dfrac{1}{4}\) - \(\dfrac{1}{12}\)
= \(\dfrac{3}{12}\) - \(\dfrac{1}{12}\)
= \(\dfrac{2}{12}\)
=\(\dfrac{1}{6}\)
=1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10+1/10x11+1/11x12
=1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11+1/11-1/12
=1/4-1/12=3/12-1/12=2/12=1/6
Tính nhanh:
1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90 + 1/110 + 1/132
`=1/[4xx5]+1/[5xx6]+1/[6xx7]+...+1/[11xx12]`
`=1/4-1/5+1/5-1/6+1/6-1/7+...+1/11-1/12`
`=1/4-1/12=3/12-1/12=2/12=1/6`
\(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\\ =\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+\dfrac{1}{7\times8}+\dfrac{1}{8\times9}+\dfrac{1}{9\times10}+\dfrac{1}{10\times11}+\dfrac{1}{11\times12}\\ =\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}\\ =\dfrac{1}{4}-\dfrac{1}{12}\\ =\dfrac{3}{12}-\dfrac{1}{12}=\dfrac{2}{12}=\dfrac{1}{6}\)
1/20+1/30+1/42+1/56+1/72+1/90+1/110+1/132+1/156 = ?
1/20 + 1/30 + 1/42 + ... + 1/156
= 1/4.5 + 1/5.6 + 1/6.7 + .... + 1/12.13
= 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/12 - 1/13
= 1/4 - 1/13
= 9/52
\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{12}-\frac{1}{13}\)
\(=\frac{1}{4}-\frac{1}{13}=\frac{9}{52}\)
****
= 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10 + 1/10.11 + 1/11.12 + 1/12.13
= 1/4 - 1/5 + 1/5 - 1/6 + ... + 1/2 - 1/13
= 1/4 - 1/13
= 9/52
1/12 + 1/20 + 1/42 + 1/56 + 1/72+ 1/90 + 1/110 + 1/132
1/12 + 1/20 + ... + 1/132
= 1/3×4 + 1/4×5 + ... + 1/11×12
= 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/11 - 1/12
= 1/3 - 1/12
= 4/12 - 1/12
= 3/12 = 1/4
\(=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{11.12}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{3}-\frac{1}{12}\)
\(=\frac{1}{4}\)
1/12 + 1/20 + ... + 1/132
= 1/3.4 + 1/4.5 + 1/6.7 + 1/7.8 + 1/9.10 + 1/10.11 + 1/11.12
= 1/3 - 1/4 + 1/4 - 1/5 + 1/6 - 1/7 + 1/7 - 1/8 + 1/9 - 1/10 + 1/10 - 1/11 + 1/11 - 1/12
= 1/3 - 11/30 - 17/72 - 1/12
= \(-\left(\frac{127}{360}\right)\)
Tính 1/20 + 1/30 + 1/42 + 1/56 + 1/ 72 + 1/90 + 1/110 + 1/ 132 + 1/156
Đặt tổng trên là A ta có :
A= 1/ 20 + 1/ 30 + 1/ 42 + 1/ 56 + 1/ 72 + 1/90 + 1/110 + 1 / 123 + 1/ 156
= 1 / 4 x5 + 1/ 5 x 6 + 1/6x 7 + 1/ 7x8 + 1/8x9 + 1/9x10+ 1/ 10x11+ 1 /11x12 +1/12 x 13
= 1/4- 1/5 + 1/ 5 - 1/6 + 1/ 6 - 1/7 + 1/ 7 - 1/8 + 1/8 - 1/9 + 1/9 - 1/10+ 1/10 - 1/11 + 1/11 - 1/12+ 1/ 12 - 1/13
= 1 /4 - 1 /13
= 9 /52
A = 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90 + 1/ 110 + 1/132 + 1/156
\(=\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{12.13}\)
áp dụng \(\frac{1}{a.b}=\frac{1}{a}-\frac{1}{b}\)làm sẽ có các số nghịch đảo và được kết quả là 1/4 - 1/13
A = 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90 + 1/110 + 1/132 + 1/156
A = 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10 + 1/10.11 + 1/11.12 + 1/12.13
A = 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 + 1/9 - 1/10 + 1/10 - 1/11 + 1/11 - 1/12 + 1/12 - 1/13
A = 1/4 - 1/13
A = 9/52
A = \(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{132}+\frac{1}{156}\)
= \(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{11.12}+\frac{1}{12.13}\)
= \(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}\)
= \(\frac{1}{4}-\frac{1}{13}\)
= \(\frac{9}{52}\)
Vậy \(A=\frac{9}{52}\)