Chứng minh rằng nếu p là một số nguyên tố lớn hơn 3 thì ( p - 1 ) ( p + 1 ) chia hết cho 24
Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p – 1)(p + 1) chia hết cho 24
Ta có p - 1 p p + 1 ⋮ 3 mà (p, 3) = 1 nên
p - 1 p + 1 ⋮ 3 (1)
p là số nguyên tố lớn hơn 3 nên p là số lẽ, p – 1 và p + 1 là hai số chẳn liên tiếp , có một số là bội của 4 nên tích của chúng chia hết cho 8 (2)
Từ (1) và (2) suy ra (p – 1)(p + 1) chia hết cho 2 nguyên tố cùng nhau là 3 và 8
Vậy (p – 1)(p + 1) chia hết cho 24.
Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p-1)(p+1) chia hết cho 24?
chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p-1)(p+1) chia hết cho 24
Ví dụ : p là 5 thì (p-1)(p+1) = (5-1)(5+1)=4.6=24 .
Vì (5-1)(5+1) (tức 24) chia hết cho 24 → các SNT P lớn hơn 3 thì (p-1)(p+1) chia hết cho 24
Tick nha !
Một số chia hết cho 24 là một số chia hết cho 4,6
Mà chia hết cho 6 là chia hết cho 2 và 3
Theo đề bài thì P>3
Thì (P-1).(P+1) sẽ có 3 số hạng là:(P-1);P và(P+1)
=>(P-1)(P+1) sẽ chia hết cho 3
P là số nguyên tố lớn hơn 3 nên P là số lẻ(P không thể là 2)
Mà P là số lẻ thì (P-1) hoặc (P+1) là số chẵn
Hiệu của (P+1) - (P-1) =2
Thì một trong hai số (P-1) hay (P+1) sẽ chia hết cho 4
=>P thuộc SNT và >3 thì chắc chắn (P-1)(P+1) chia hết cho 24
Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p-1)(p+1) chia hết cho 24
n chia cho 7 dư 4 => n = 7k + 4 ( k là số tự nhiên)
n2 = (7k + 4)2 = 49k2 + 56k + 16 = 7(7k2 + 8k + 2) + 2 => n2 chia cho 7 dư 2
số n có dạng 7k+4
=>n2=(7k+4)(7k+4)
=>n2=(7k)2+7k.4+4.7k+16
Vì 7k)2+7k.4+4.7k chia hết cho n
=>dư của n2chia cho 7 tức là số dư của 16 chia cho 7
16:7=2 dư 2
=>........................
Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p - 1)(p + 1) chia hết cho 24.
Ta có (p-1). p.(p+1) chia het cho 3 ; mà ( p;3)=1 =>(p-1). (p+1) 3 (1)
Ví p là số nguyên tố lớn hơn 3 => p là số lẻ =>p-1;p+1 là số chẵn (2)
Từ (1) và (2) => (p-1). p.(p+1) chia hết cho hai số nguyên tố cùng nhau 3 và 8.
Vậy (p-1). p.(p+1) chia het cho 24
Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p - 1)(p + 1) chia hết cho 24.
Giải
p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2.
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3)
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1)
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4)
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5)
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.
p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2.
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3)
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1)
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4)
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5)
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.
Chứng minh rằng: Nếu P là số nguyên tố lớn hơn 3 thì (P-1).(P+1) chia hết cho 24
P là số nguyên tố lớn hơn 3 => P không chia hết cho 2 cho 3
Ta có :P không chia hết cho 2
=> P-1 và P+1 là 2 số chẵn liên tiếp => (P-1)(P+1) chia hết cho 8 (1)
Mặt khác:P không chia hết cho 3
Nếu P= 3k +1 thì P-1 =3k chia hết cho 3 => (P-1(P+1) chia hết cho 3
Tương tự: Nếu P= 3k+2 thì P+1=3k +3 chia hết cho 3 => (P-1(P+1) chia hết cho 3(2)
Từ (1)(2)=>(P-1)(P+1) chia hết cho 8 cho 3 mà (8;3)=1 =>(P-1)(P+1) chia hết cho 24
p là số nguyên tố > 3 nên p không chia hết cho 3, do đó p = 3k + 1 hoặc p = 3k + 2.
- Nếu p = 3k + 1 thì p - 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (1)
- Nếu p = 3k - 1 thì p + 1 = 3k chia hết cho 3 -> (p - 1)(p + 1) chia hết cho 3 (2)
Từ (1) và (2) -> (p-1)(p+1) luôn chia hết cho 3 (3)
Mặt khác, p là số nguyên tố > 3 nên p là số lẻ -> p = 2h + 1 -> (p - 1)(p + 1) = (2h + 1 - 1)(2h + 1 + 1) = 2h(2h + 2) = 4h(h +1)
h(h + 1) là tích của 2 số tự nhiên liên tiếp -> h(h + 1) chia hết cho 2 -> 4h(h + 1) chia hết cho 8 -> (p - 1)(p + 1) chia hết cho 8 (4)
Ta lại có: 3 và 8 là 2 số nguyên tố cùng nhau (5)
Từ (3), (4) và (5) -> (p - 1)(p + 1) chia hết cho 24.
P là số nguyên tố lớn hơn 3 => P không chia hết cho 2 cho 3
Ta có :P không chia hết cho 2
=> P-1 và P+1 là 2 số chẵn liên tiếp => (P-1)(P+1) chia hết cho 8 (1)
Mặt khác:P không chia hết cho 3
Nếu P= 3k +1 thì P-1 =3k chia hết cho 3 => (P-1(P+1) chia hết cho 3
Tương tự: Nếu P= 3k+2 thì P+1=3k +3 chia hết cho 3 => (P-1(P+1) chia hết cho 3(2)
Từ (1)(2)=>(P-1)(P+1) chia hết cho 8 cho 3 mà (8;3)=1 =>(P-1)(P+1) chia hết cho 24
chứng minh rằng nếu p là 1 số nguyên tố lớn hơn 3 thì (p-1)(p_1) chia hết cho 24
Ví dụ: p=5 thì (p+1)(p-1)=4x6=24
Vì (5+1)(5-1) (tức 24) chia hết cho 24 suy ra các số nguyên tố lớn hơn 3 thì đều chia hết cho 24(dpcm)
k đúng cho mk nha!
lập luận, chứng minh không chặt chẽ chút nào cả
chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì p^2-1 chia hết cho 24
Do p nguyên tố, p > 3 nên p không chia hết cho 3 => p2 không chia hết cho 3
=> p2 chia 3 dư 1
=> p2 - 1 chia hết cho 3 (1)
Do p nguyên tố, p > 3 nên p lẻ => p2 lẻ
=> p2 chia 8 dư 1
=> p2 - 1 chia hết cho 8 (2)
Từ (1) và (2), do (3,8)=1 => p2 - 1 chia hết cho 24
=> đpcm
Ủng hộ mk nha ^-^
1)cho ba số nguyên tố lớn hơn 3 trong đó số sau lớn hơn số trước là d dơn vị chứng minh rằng d chia hết cho 6
2)hai số nguyên tố gọi là sinh đôi nếu chúng là hai số nguyên tố lẻ lien tiếp chứng minh rằng một số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6
3)cho p là số nguyên tố lớn hơn 3 biết p+2 cũng là số nguyên tố chứng minh rằng p+1 chia hết cho 6