Cho A=7+7^2+7^3+7^4+7^5+7^6+...+7^21 Chứng tỏ rằng A chia hết cho 57
Bài 1: Cho A=4+41+43+...4100
a) Tính A
b) Chứng tỏ rằng A chia hết cho 5; A chia hết cho 20; A chia hết cho 21
Bài 2: Cho B= 7+72+73+...7400
a) Tính B
b) Chứng tỏ rằng B chia hết cho 8; B chia hết cho 56; B chia hết cho 57
Chứng tỏ rằng : A = ( 7 + 7^2 + 7^3 + 7^4 + 7^5 + 7^6 ) chia hết cho 50
Sai đề ruj A=137256 ko thể chia hết cho 50
a.Cho A=932 -930.Chứng tỏ A chia hết cho 10
b.Cho A=40 +41+42+...+448+449. Tìm dư khi chia A cho 5
c.Cho A=71+72+73+...+719+720+721. Chứng tỏ A chia hết cho 57
a.Cho A=40+41+42+...+448+449.Tìm dư khi chia A cho 5
b.Cho A=71+72+73+...+719+720+721. Chứng tỏ A chia hết cho 57
1) Chứng tỏ rằng :
A=7+7^2+7^3+....+7^90 chia hết cho 57
A = ( 7 + 7^2 + 7^3 ) + ( 7^4 + 7^5 + 7^6 ) + ... + ( 7^88 + 7^89 + 7^90 )
A = 7( 1 + 7 + 7^2 ) + 7^4 ( 1 + 7 + 7^2 ) + ... + 7^88( 1 + 7 + 7^2 )
A = 7 . 57 + 7^4 . 57 + ... + 7^88 . 57
A = 57( 7 + 7^4 + ... + 7^88 )
=> A chia hết cho 57
cái đó biết rồi,muốn làm cách làm chi tiết cơ.
cho A = 71 +72+73+ ... +719+720+721. Hãy chứng tỏ A chia hết cho 57
Chứng tỏ rằng : A=7+7^1+7^3+7^4+7^5+7^6 chia hết cho 50
giúp mình với mai đi học rùi bạn nào biết làm chỉ mình cách cụ thể nha ! giúp nha gấp lắm
Bài 1 : tìm N thuộc N , biết :
a) 1<2^n < 128
b) 9 , 3^n < 729
c) 1 <=3^2n <= 27 ^ 2
BÀi 2 : chứng minh rằng
a) 5^7 - 5^6 + 5^5 chia hết cho 21
b) 7^6 + 7^5 - 7^4 chia hết cho 77
Bài 3 : chứng minh rằng
a)5+ 5^2 + 5^3 + 5^4 .....+ 5^120 chia hết cho 156
b) 1 + 7 + 7^2 + 763 +....+ 7^98 chia hết cho 57
Bài 4 : chứng minh rằng
a) 1+2+ 2^2 + 2^3 + 2^4 +......+ 2 ^ 63 = 2 ^ 64-1
chứng tỏ rằng
A=2+22+23+...+220 chia hết cho 5
B=7+72+73+...+7102chia hết cho 57
\(A=\left(2+2^2+2^3+2^4\right)+....+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)
\(A=30+...+2^{16}.\left(2+2^2+2^3+2^4\right)\)
\(A=30+...+2^{16}.30\)
\(A=30.\left(1+...+2^{16}\right)⋮5\)
B tương tự ( 57=3.19)
cm tổng đó chia hết cho 3 và 19 là đc =)
chứng tỏ rằng
1] 1+ 4+4^2+4^3+...+4^2012 chia hết cho 21
2] 1+7+7^2+7^3+...7^101 chia hết cho 8
3] 2+2^2+2^3+...+2^100 chia hết cho 31 và 5
1) \(1+4+4^2+4^3+...+4^{2012}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=21+21\cdot4^3+...+21\cdot4^{2010}\)
\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21
2) \(1+7+7^2+7^3+...+7^{101}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=8+8\cdot7^2+...8\cdot7^{100}\)
\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8
3) CM chia hết cho 5:
\(2+2^2+2^3+2^4+...+2^{100}\)
\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)
\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)
\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5
CM chia hết cho 31:
\(2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\cdot31+...+2^{96}\cdot31\)
\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31