Cho abc - deg chia hết cho 13. Chứng minh rằng abcdeg chia hết cho13
nếu abc-deg chia hết cho13 thì abcdeg chia hết cho 13
Đáp án:
Giải thích các bước giải:
ta có: abcdef = 1000*abc + def = 1001*abc-(abc-def)
do 1001 chia hết cho 13=>1001*abc chia hết cho 13
abc-def chia hết cho 13
nên 1001*abc-(abc-def) chia hết cho 13
=>abcdef chia hết cho 13 =>dpcm
\(\overline{abcdeg}\) = \(\overline{abc}\) .1000 + \(\overline{deg}\)
\(\overline{abcdeg}\)= \(\overline{abc}\).(1001 - 1) + \(\overline{deg}\)
\(\overline{abcdeg}\) = \(\overline{abc}\). 1001 - \(\overline{abc}\) + \(\overline{deg}\)
\(\overline{abcdeg}\) = 13.77.\(\overline{abc}\) - (\(\overline{abc}\) - \(\overline{deg}\))
Vì 13.77.\(\overline{abc}\) ⋮ 13 ∀ \(\overline{abc}\)
\(\overline{abc}\) - \(\overline{deg}\) ⋮ 13 (giả thiết)
⇒ 13.77.\(\overline{abc}\) - (\(\overline{abc}\) - \(\overline{deg}\)) ⋮ 13 (tính chất chia hết của một hiệu)
⇒ \(\overline{abcdeg}\) = 13.77.\(\overline{abc}\) - (\(\overline{abc}\) - \(\overline{deg}\)) ⋮ 13
⇒ \(\overline{abcdeg}\) ⋮ 13 (đpcm)
cho abc-deg chia hết cho 13 . chứng minh rằng abcdeg chia hết cho 13
\(\overline{abcdef}=1000\overline{abc}+\overline{def}=1001\overline{abc}+\overline{def}-\overline{abc}\)
\(=13.77\overline{abc}-\left(\overline{abc}-\overline{def}\right)⋮13\)
[abc gạch đầu - deg gạch đầu ] ko chia hết cho 13 chứng minh rằng abcdeg gạch đầu ko chia hết cho 13
Cho abc - deg chia hết cho 13.Chứng minh abcdeg chia hết cho 13
hee tau la ..... mi bit ko thuy dai la.... bi mat ban than cua mi
Ta có : abcdeg = 1000abc + deg = 1001abc + ( abc - deg )
Mà 1001 chia hết cho 13 và abc - deg cũng chia hết cho 13
=> abcdeg chia hết cho 13
Ta có : abcdeg = 1000abc + deg = 1001abc + ( abc - deg )
Mà 1001 chia hết cho 13 và abc - deg cũng chia hết cho 13
=> abcdeg chia hết cho 13
Cho abc - deg chia hết cho 13
Chứng minh abcdeg chia hết cho 13
Vì abc-deg chia hết cho 13 nên abc và deg phải chia hết cho 13
Suy ra abcdeg chia hết cho 13
Chưa chắc đâu Yến Nhi Ngọc Hoàng
Ví dụ abc chia 13 dư 5, deg chia 13 dư 5 thì abc - deg vẫn chia hết cho 13
Ta có :
\(\overline{abcdeg}=1000\overline{abc}+\overline{deg}=\left(1000\overline{abc}-1000\overline{deg}\right)+1001\overline{deg}\)
Lại có :
\(\overline{abc}-\overline{deg}⋮13\)\(\Rightarrow\)\(1000\overline{abc}-1000\overline{deg}⋮13\)
\(1001\overline{deg}=13.77.\overline{deg}⋮13\)
Vậy \(\overline{abcdeg}⋮13\) nếu \(\overline{abc}-\overline{deg}⋮13\)
Chúc bạn học tốt ~
cho abc - deg chia hết cho 13
chứng minh abcdeg chia hết cho 13
vi abc chia het cho 13=>abc000chia het cho 13
ma deg chia het cho 13 =>abc000+degchia het cho 13
=>abcdeg chia het cho 13
Chứng minh rằng
Nếu abc chia hết cho 7 thì 2a + 3b + c chia hết cho 7
Nếu abc - deg chia hết cho 13 thì abcdeg ciha hết cho 13
Ai nhanh nhất mình tick
abc = a . 100 + b . 10 + c
= (a . 98 + b . 7) + 2 . a + 3 . b + a
Ta có : a.98 + b.7 chia hết cho 7
=> 2a + 3b + c chia hết cho 13
Chứng minh
Nếu (abc-deg)chia hết cho 13 thì abcdeg chia hết cho 13
Ta có : abcdeg = 1000abc + deg = 1001abc + ( abc - deg )
Mà 1001 chia hết cho 13 và abc - deg cũng chia hết cho 13
=> abcdeg chia hết cho 13
abcdeg chia hat cho 13 hahahahah 2016
Ta có: abcdeg= abc.100+deg
= abc.101+(abc-deg)
Ta thấy 1001 chia hết cho 13 => abc.1001 chia hết cho 13
Mà abc-deg chia hết cho 13 => abcdeg chia hết cho 13
Chắc chắn 100% kết quả là đúng
chứng minh rằng :
a)abcabc chia hết cho 7 , 11 và 13
b)abcdeg chia hết cho 23 và 29 , biết rằng abc = 2.deg
a)
abcabc=abc.1001
Mà 1001 chia hết cho cả 7 ;11và 13
=>abc.1001 chia hết cho 7;11;13
Hay abcabc chia hết cho 7;11;13
Vậy............................
b)
abcdeg=abc.1000+deg (1)
Thay abc=2.deg vào (1) ta có :
deg.2.1000+deg
=deg.2001
Mà 2001 cùng chia hết ch0 23 và 29
=>deg.2001 chia hết cho cả 23 và 29
Hay abcdeg chia hết cho 23 và 29
Vậy ......................................