Những câu hỏi liên quan
TN
Xem chi tiết
NT
Xem chi tiết
H24
5 tháng 9 2018 lúc 17:49

ta có \(\frac{p}{m-1}=\frac{m+n}{p}\Rightarrow P^2=\left(m-1\right)\left(m+n\right)\)

ta có \(Ư\left(P^2\right)\in\left\{1;p;p^2\right\}\)vì p là số nguyên tố

do \(m+n>m-1;m+n\ne m-1\Rightarrow m+n=p^2;m-1=1\)

\(\Rightarrow m=1+1=2\Rightarrow m+n=2+n=P^2\left(đpcm\right)\)

Bình luận (0)
NC
Xem chi tiết
TH
27 tháng 9 2015 lúc 17:37

Vì p là số nguyên tố lẻ nên p>1.ĐKXĐ m,n khác 0.

Ta có: \(\frac{1}{p}=\frac{1}{m^2}+\frac{1}{n^2}\Leftrightarrow\)\(\frac{1}{p}=\left(\frac{m^2+n^2}{m^2n^2}\right)\Leftrightarrow\)\(\left(m^2+n^2\right)p=m^2n^2\)   \(\left(1\right)\)

\(\Leftrightarrow m^2n^2-m^2p-n^2p+p^2=p^2\Leftrightarrow\left(m^2-p\right)\left(n^2-p\right)=p^2\)  \(\left(2\right)\)

Từ (1) ta được m hoặc n chia hết p.Giả sử m chia hết cho p. Đặt m2=a2p2 ( a khác 0) nên (2) \(\Leftrightarrow\)  \(\left(a^2p^2-p\right)\left(n^2-p\right)=p^2\)

\(\Leftrightarrow\left(a^2p-1\right)\left(n^2-p\right)=p\)

Vì a khác 0 nên a2>0 a2p chia hết p . Vì p>2 nên a2p-1 không chia hết cho p.

Vậy n2-p chia hết cho p nên n chia hết cho p . Đặt n=bp.

Dựa pt đầu ta có \(\frac{1}{p}=\frac{1}{a^2p^2}+\frac{1}{b^2p^2}\Leftrightarrow1=\frac{1}{a^2p}+\frac{1}{b^2p}\)

nên a2p=2 và b2p=2 nên vô lý

Bình luận (0)
KQ
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
PK
31 tháng 1 2017 lúc 8:44

Ta có : \(\frac{17}{3}=5+\frac{2}{3}=5+\frac{1}{\frac{3}{2}}=5+\frac{1}{1+\frac{1}{2}}\)

Nên suy ra : m = 5 ; n = 1 ; p = 2

Bình luận (1)
NA
25 tháng 1 2017 lúc 20:43

1

Bình luận (2)
PN
Xem chi tiết
H24
Xem chi tiết
NA
27 tháng 1 2017 lúc 13:39

1

Bình luận (0)
GH
Xem chi tiết
HX
9 tháng 2 2017 lúc 18:49

\(5+\frac{1}{1+\frac{1}{2}}=\frac{17}{3}\)

n=1

Bình luận (0)
H24
9 tháng 2 2017 lúc 20:17

\(\frac{17}{3}=5+\frac{2}{3}=5+\frac{1}{\frac{3}{2}}=5+\frac{1}{1+\frac{1}{2}}\\ \) vậy n=1

Bình luận (0)