S=3/1.3 +3.3.5 +.........+ 3/99.100. Tính S
1.3/2^2.2.4/3^3.3.5/4^4.....19.20/18^2
cho S = 1/1.3+1/3.5+1/5.7+1/7.9+...+1/97.99+1/99.100
CMR :
a, S < 1
b, S > 1/3
a),b) Tính ra rồi chứng minh (dãy số viết theo quy luật)
Đây là toán lớp 1 hả??????????? Tớ nghĩ là toán lớ 6 đấy!!!!!!
S=1/1.3+1/3.5+1/5.7+...+1/99.100
\(S=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\right)\)
\(S=\frac{1}{2}.\left(1-\frac{1}{101}\right)=\frac{1}{2}\times\frac{100}{101}=\frac{50}{101}\)
\(S=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.100}\)
\(S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=1-\frac{1}{100}\)
\(S=\frac{99}{100}\)
\(S=\frac{1}{1\times3}+\frac{1}{3\times5}+...+\frac{1}{99\times101}\) chứ bạn
Rút gọn tổng S=1/1.3+1/3.5+1/5.7+1/7.9+...+1/99.100 ta được S là
=>2S=2/1.3+2/3.5+....+2/99.100
ơ bạn nhầm đề bài à
tinhs S=(`1+1/1.3).(1+1/2.4).(1+1/3.5)......(1+1/99.100)
S=2/1.3+2/2.4+2/3.5................2/99.100
=1-1/3+..........................1/99-1/100
=1-1/100
=99/100
VẬY S =99/100
Cho S=1/1.3+1/3.5+1/5.7+...+1/99.100. Khi đó 2S+1/101
có dạng này nhưng là số chẵn nhân chãn
1, tìm x thuộc N biết
32+42=5x-1
2, tính tổng
S=1.2+2.3+3.4+...+99.100
S=1.2+2.3+3.4+...+99.100
giúp mình nha mình đang cần gấp,thanks mn
1. ta có :
\(3^2+4^2=5^{x-1}\)
\(25=5^{x-1}\)
\(5^2=5^{x-1}\)
=> x = 3
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + 99.100.101
=> 3S = 99.100.101
=> S = 99.100.101/3
=> S = 333300
a)S = 1.2 + 2.3 + 3.4 + 4.5 +........+99.100
b)S= 1.3 + 3.5 + 5.7 +.............+99.101
c)S= 1.4 + 4.7 + 7.10 +...........+37.40 + 40.43
Giúp mình với mình cần gấp,mai trả bài rồi
Tính tổng S:
\(S=1.2+2.3+3.4+4.5+.......+99.100\)
Bài này mình vừa giải :D http://olm.vn/hoi-dap/question/185493.html -- số khác
Ta có 3 x S = 1 x 2 x 3 + 2 x 3 x 3 + 3 x 4 x 3 + ... + 99 x 100 x 3
3 x S = 1 x 2 x (3 - 0) + 2 x 3 x (4 - 1) + 3 x 4 x (5 - 2) + ... + 99 x 100 x (101 - 98)
3 x S = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + 3 x 4 x 5 - 2 x 3 x 4 + .. + 99 x 100 x 101 - 98 x 99 x 100
=> 3 x S = 99 x 100 x 101
=> A = 33 x 100 x 101 = 333300