\(\frac{1}{2}\times\frac{2}{3}\)
Tính hợp lí:
A =\((\frac{2}{7}\times\frac{1}{4}-\frac{1}{3}\times\frac{2}{7})\div(\frac{2}{7}\times\frac{3}{9}-\frac{2}{7}\times\frac{2}{5})\)
B = \(\frac{(\frac{1}{5}-\frac{2}{7})\times\frac{3}{4}-\frac{3}{4}\times(\frac{1}{3}-\frac{2}{7})}{\frac{1}{5}\times\frac{2}{7}-\frac{1}{3}\times(\frac{2}{7}+\frac{3}{9})+\frac{3}{9}\times\frac{1}{5}}\)
CÓ LỜI GIẢI THÍCH CHI TIETS NHÉ AI NHANH MK TICK
A=\([\)\(\frac{2}{7}\)\(\times\)(\(\frac{1}{4}-\frac{1}{3}\))\(]\)\(\div\)\([\)(\(\frac{2}{7}\times\)(\(\frac{3}{9}-\frac{2}{5}\))\(]\)
=(\(\frac{2}{7}\times\)\(\frac{-1}{12}\))\(\div(\)\(\frac{2}{7}\times\)\(\frac{-1}{15}\))
=\(\frac{-1}{42}\)\(\div\)\(\frac{-2}{35}\)
=\(\frac{-1}{42}\)\(\times\)\(\frac{35}{-2}\)
=\(\frac{5}{12}\)
B = \(\frac{(\frac{1}{5}-\frac{2}{7})\times\frac{3}{4}-\frac{3}{4}\times(\frac{1}{3}-\frac{2}{7})}{\frac{1}{5}\times\frac{2}{7}-\frac{1}{3}\times(\frac{2}{7}+\frac{3}{9})+\frac{3}{9}\times\frac{1}{5}}\)
ồ cuk dễ nhỉ
Nếu các bn thích thì ...........
cứ cho NTN này nhé !
Tìm tích:
1.\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\left(\frac{1}{4}+1\right)\times...\times\left(\frac{1}{999}+1\right)\)
2.\(\left(\frac{1}{2}-1\right)\times\left(\frac{1}{3}-1\right)\times\left(\frac{1}{4}-1\right)\times...\times\left(\frac{1}{1000}-1\right)\)
3.\(\frac{3}{2^2}\times\frac{8}{3^2}\times\frac{15}{4^2}\times...\times\frac{99}{10^2}\)
biết làm bài 1 thôi
\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\cdot\cdot\cdot\times\left(\frac{1}{999}+1\right)\)
= \(\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times\cdot\cdot\cdot\times\frac{1000}{999}\)
lượt bỏ đi còn :
\(\frac{1000}{2}=500\)
Tính nhanh:\(\frac{1}{2}\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{3}+\frac{1}{3}\times\frac{1}{4}+\frac{1}{4}\times\frac{1}{5}+\frac{1}{5}\times\frac{1}{6}\)
\(\frac{1}{2}\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{3}+...+\frac{1}{5}\times\frac{1}{6}\)
\(=\frac{1}{4}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{6}\)
\(=\frac{3+6-2}{12}=\frac{7}{12}\)
\(\frac{1}{2}\)* \(\frac{1}{2}\)+ \(\frac{1}{2}\)*\(\frac{1}{3}\)+ \(\frac{1}{3}\)* \(\frac{1}{4}\)+ \(\frac{1}{4}\)* \(\frac{1}{5}\)+ \(\frac{1}{5}\)* \(\frac{1}{6}\)
=\(\frac{1}{2}\)* \(\frac{1}{6}\)= \(\frac{1}{12}\)
( Những phân số khác nhau bạn loại đi nhé tại mình ko làm được bước đó trên này bạn thông cảm nhé ! )
\(\frac{1}{2}\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{3}+...+\frac{1}{5}\times\frac{1}{6}\)
\(=\frac{1}{4}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{6}\)
\(=\frac{7}{12}\)
Chứng tỏ rằng: \(\frac{1}{1}\times\frac{1}{3}\times\frac{1}{5}\times.....\times\frac{1}{99}=\frac{2}{51}\times\frac{2}{52}\times\frac{2}{53}\times.....\times\frac{2}{100}\)
VÌ 1/1.1/3.......1/99=2/51.2/52.........2/100
VÀ 2/51.2/52.....2/100=1/1.1/3.......1/99
SUY RA BẰNG NHAU
C=\((1+\frac{2}{3})\times(1+\frac{2}{5})\times(1+\frac{2}{7})\times...\times(1+(\frac{2}{2009})\times(1+\frac{2}{2011})\)
\(C=\left(1+\frac{2}{3}\right)\cdot\left(1+\frac{2}{5}\right)\cdot\left(1+\frac{2}{7}\right)\cdot\cdot\cdot\cdot\cdot\left(1+\frac{2}{2009}\right)\cdot\left(1+\frac{2}{2011}\right)\)
\(C=\frac{5}{3}\cdot\frac{7}{5}\cdot\frac{9}{7}\cdot\cdot\cdot\cdot\cdot\frac{2011}{2009}\cdot\frac{2013}{2011}\)
\(C=\frac{5\cdot7\cdot9\cdot\cdot\cdot\cdot\cdot2011\cdot2013}{3\cdot5\cdot7\cdot\cdot\cdot\cdot\cdot2009\cdot2011}\)
\(C=\frac{2013}{3}\)
đề bài của bài là tính
ai nhanh mk k cho
\(C=\left(1+\frac{2}{3}\right).\left(1+\frac{2}{5}\right).....\left(1+\frac{2}{2009}\right).\left(1+\frac{2}{2011}\right)\)
\(C=1\left(\frac{2}{3}+\frac{2}{5}+...+\frac{2}{2009}+\frac{2}{2011}\right)\)
\(\frac{1}{2}C=\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2009}+\frac{1}{2011}\)
\(\frac{1}{2}C=\frac{1}{3+5+...+2011}\)
\(\frac{1}{2}C=\frac{1}{1012035}\)
\(\Rightarrow C=\frac{1}{1012035}:\frac{1}{2}=\frac{2}{1012035}\)
\(\frac{1}{1}\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{3}+\frac{1}{3}\times\frac{1}{4}+\frac{1}{4}\times\frac{1}{5}+\frac{1}{5}\times\frac{1}{6}\)
\(=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)
\(=\frac{30}{60}+\frac{10}{60}+\frac{5}{60}+\frac{3}{60}+\frac{2}{60}=\frac{50}{60}=\frac{5}{6}\)
=\(\frac{1}{2}\)+\(\frac{1}{6}\)+\(\frac{1}{12}\)+\(\frac{1}{20}\)+\(\frac{1}{30}\)=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{6}\)
=1-\(\frac{1}{6}\)
=\(\frac{5}{6}\)
C1:\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{6}\)
\(\Rightarrow\frac{5}{6}\)
C2:\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{6}\)
\(\Rightarrow\frac{5}{6}\)
1. Tính :
a.\(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\)
b.\(\left(1-\frac{1}{7}\right)\times\left(1-\frac{2}{7}\right)\times\left(1-\frac{3}{7}\right)\times......\times\left(1-\frac{10}{7}\right)\)
a) \(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\) \(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{5}{12}}{\frac{55}{12}}\)
\(=\frac{2}{3}+\frac{1}{11}=\frac{25}{33}\)
b) \(\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)....\left(1-\frac{10}{7}\right)=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right).\left(1-\frac{8}{7}\right).\left(1-\frac{9}{7}\right).\) \(\left(1-\frac{10}{7}\right)\) = 0
a)\(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\)
\(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{7}{12}+\frac{10}{12}-\frac{12}{12}}{\frac{60}{12}-\frac{9}{12}+\frac{4}{12}}\)
\(=\frac{2}{3}+\frac{\frac{5}{12}}{\frac{55}{12}}\)
\(=\frac{2}{3}+\frac{1}{11}\)
\(=\frac{25}{33}\)
b)\(\left(1-\frac{1}{7}\right)\cdot\left(1-\frac{2}{7}\right)\cdot...\cdot\left(1-\frac{10}{7}\right)\)
Ta nhận thấy trong tích này có 1 thừa số là\(\left(1-\frac{7}{7}\right)=0\)nên tích trên sẽ bằng 0.
Ta có \(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\)
= \(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{10}{12}-\frac{12}{12}}{\frac{60}{12}-\frac{9}{12}+\frac{4}{12}}\)
= \(\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{5}{12}}{\frac{55}{12}}\)
= \(\frac{2}{3}+\frac{1}{11}\)
= \(\frac{25}{33}\)
E=\(1+\frac{1}{2}\times\left(1+2\right)+\frac{1}{3}\times\left(1+2+3\right)\frac{1}{4}\times\left(1+2+3+\right)+....+\frac{1}{200}\times\left(1+2+3+....+2001\right)\)
Tính:
\(A=\frac{1^2}{1\times2}\times\frac{2^2}{2\times3}\times\frac{3^2}{3\times4}\times...\times\frac{99^2}{99\times100}\times\frac{100^2}{100\times101}\)
Ta có:
\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)
\(=\frac{1}{2}.\frac{4}{6}.\frac{9}{12}....\frac{9801}{9900}.\frac{10000}{10100}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}.\frac{100}{101}=\frac{1.2.3...99.100}{2.3.4...100.101}=\frac{1}{101}\)(Tối giản)