CMR 1 .3 .5 ...2013 . 2015 + 2 .4 .6....2014 . 2016 chia hết cho 9911
CTR 1 . 3 . 5 . ... . 2013 . 2015 + 2 . 4 . 6 . ... . 2014 . 2016 chia hết cho 9911
Chứng minh rằng 1 . 3 . 5. ... . 2013 . 2015 + 2 . 4 . 6 . ... . 2014 . 2016 chia hết cho 9911
Ta có 9911 = 11 . 17 . 53 . Trong mỗi tích đều có các thừa số đó :
- Tích các số lẻ có chứa các số 11 ; 17 ; 53
- Tích các số chẵn có các số 22 ; 34 ; 106 lần lượt là bội của các số 11 ; 17 ; 53
=> Tổng hai tích chia hết cho 9911.
1) CMR : A=(n+2015)(n+2016) + n2 + n chia hết cho 2 với n ϵ N
2) So sánh :
P = \(\frac{2013}{2014^{2013}}+\frac{2014}{2015^{2014}}+\frac{2015}{2016^{2015}}+\frac{2016}{2017^{2016}}\) và
Q = \(\frac{2014}{2017^{2016}}+\frac{2013}{2016^{2015}}+\frac{2016}{2015^{2014}}+\frac{2015}{2014^{2013}}\)
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
CMR 1.3.5......2015+2.4.6.8.......2016 chia hết cho 9911
tính nhanh
A=1+3-5+7-..........-2013+2015
B=1-2+3-4+...................2015-2016
C=1-2-3+4+5-6-6+8+...........+2013-2014-2015+2016
D=1-4+7-10+.....-2014+2017
E=1+2-3-3+5+6 -.......+2013+2014-2015-2016
F=1-2+3-4+..........+2015+2016
G=1+3-5-7+9+11.............-2013-2015
H=1-2-34+5-6-7+8+.................+1013-1014-1015+1016
chị kết bạn với em nha gửi lời kết bn với em nhé
Cho A =5+5^2+5^3+5^4+...+5^2014+5^2015+5^2016
a) Tính A
b) CMR: A chia hết cho 6
c) CMR: A chia hết cho 31
Tính các tổng sau:
a) A=1+(-2) + 3 +(-4) + ...+(- 2014) + 2015;
b) B= (-2) + 4 +(-6) + 8 ... +(-2014) + 2016;
c) 1+(-3) + 5 +(-7) + ... + 2013 +(-2015);
d) (-2015) + (-2014) + (-2013)+ ... + 2015 + 2016
\(A=\left[1+\left(-2\right)\right]+\left[3+\left(-4\right)\right]+....+\left[2013+\left(-2014\right)+2015\right]\)
\(A=\left(-1\right)+\left(-1\right)+....+\left(-1\right)+2015\left(\text{1007 số hạng }\left(-1\right)\right)=1008\)
\(B=\left(-2\right)+4+\left(-6\right)+8+\left(-10\right)+,...+\left(-2014\right)+2016\)
\(B=2+2+....+2\left(\text{504 số hạng 2}\right)=1008\)
c) 1 + ( -3 ) +5 + ( -7 ) + ...........+ 2013 + ( -2015 )
[ 1 + (-3 ) ] + [ 5 + -7 ] + .......... + [ 2013 + ( - 2015 ) ]
có số cặp là : [ ( 2015 - 1 ) : 2 + 1 ] : 2 = 504 ( cặp )
= -2 + -2 + -2 +..........+ -2
= -2 x 504
= -1008
1) Cmr : \(A=75\left(4^{2015}+4^{2014}+4^{2013}+....+4^2+5\right)+25\)chia hết cho \(4^{2016}\)
đặt B = 42015 + 42014 + 42013 + ... + 42
4B = 42016 + 42015 + 42014 + ... + 43
4B - B = ( 42016 + 42015 + 42014 + ... + 43 ) - ( 42015 + 42014 + 42013 + ... + 42 )
3B = 42016 - 42
\(\Rightarrow\)B = \(\frac{4^{2016}-4^2}{3}\)hay B = \(\frac{4^{2016}-16}{3}\)
\(\Rightarrow\)A = 75 . ( \(\frac{4^{2016}-16}{3}\)+ 5 ) + 25
A = 75 . ( \(\frac{4^{2016}-16}{3}\)+ \(\frac{15}{3}\)) + 25
A = 75 . ( \(\frac{4^{2016}-1}{3}\)) + 25
A = 25 . ( 3 . \(\frac{4^{2016}-1}{3}\)) + 25
A = 25 . ( 42016 - 1 ) + 25
A = 25 . ( 42016 - 1 + 1 )
A = 25 . 42016 \(⋮\)42016
Cmr: 20142015 + 20162013 chia hết cho 2015.
2014 đồng dư với -1(mod 2015)
=>20142015 đồng dư với (-1)2015=-1(mod 2015)
2016 đồng dư với 1(mod 2015)
=>20162013 đồng dư với 1(mod 2015)
=>20142015+20162013 đồng dư với -1+1=0(mod 2015)
=>20142015+20162013 chia hết cho 2015
=>đpcm
\(2014^{2015}+2016^{2013}=\left(2015-1\right)^{2015}+\left(2015+1\right)^{2013}=2015^{2015}+2015^{2013}=2015.\left(2015^{2014}+2015^{2012}\right)\)
chia hết cho 2015